n = - etrans / elongitudinal |
e = DL/L. |
n = (3K - 2G)/(6K + 2G)
E = 2G( 1 + n) E = 3K(1 - 2 n) |
Material
Isotropic upper limit [1] Rubber [6] Indium [11] Gold [4] Lead [4] Copper [7] Aluminum [4] Copper [4] Polystyrene [6] Brass [1] Ice [8] Polystyrene foam [6] Stainless Steel [7] Steel [1] Tungsten [4] Tungsten Zinc [5] Fused quartz [9] Boron [12] Beryllium [4] Re-entrant foam [10] Isotropic lower limit [1] |
Poisson's ratio
0.5 0.48- ~0.5 0.45 0.42 0.44 0.37 0.34 0.35 0.34 0.33 0.33 0.3 0.30 0.29 0.30 0.28 0.25 0.17 0.08 0.03 -0.7 -1 |
References
[1] I. S. Sokolnikoff, Mathematical theory of elasticity. Krieger, Malabar FL, second edition, 1983. [2] A. M. James and M. P. Lord in Macmillan's Chemical and Physical Data, Macmillan, London, UK, 1992. [3] G.W.C. Kaye and T.H. Laby in Tables of physical and chemical constants, Longman, London, UK, 15th edition, 1993. [4] G.V. Samsonov (Ed.) in Handbook of the physicochemical properties of the elements, IFI-Plenum, New York, USA, 1968. [5] G. Simmons, and H. Wang, Single crystal elastic constants and calculated aggregate properties: a handbook, MIT Press, Cambridge, 2nd ed, 1971. [6] J. A. Rinde, Poisson's ratio for rigid plastic foams, J. Applied Polymer Science, 14, 1913-1926, 1970. [7] D. E. Gray, American Institute of Physics Handbook, 3rd ed., chapter 3, McGraw hill, New York, 1973. [8] E. M. Schulson, The mtructure and mechanical behavior of ice, JOM, 51 (2) pp. 21-27, 1999. article link [9] H. H. Demarest, Jr., Cube resonance method to determine the elastic constants of solids, J. Acoust. Soc. Am. 49, 768-775 (1971). [10] R. S. Lakes, Foam structures with a Negative Poisson's ratio, Science, 235 1038-1040, 1987. [11] D. Li, T. M. Jaglinski, D. S. Stone, and R. S. Lakes, Temperature insensitive negative Poisson's ratios in isotropic alloys near a morphotropic phase boundary, Appl. Phys. Lett, 101, 251903, Dec. (2012). [12] K. A. Gschneidner, Jr., Physical Properties and Interrelationships of Metallic and Semimetallic Elements, Solid State Physics, 16, 275-426, 1964 |
(sxx/ exx)= E. |
(sxx/exx)= C1111= E ((1 - n) / (1 + n)(1 - 2n)). |