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Abstract
Experimental data (Thornton, et al., 1997) show that relaxation proceeds more rapidly (a

greater slope on a log log scale) than creep in ligament, a fact not explained by linear
viscoelasticity.  An interrelation between creep and relaxation is therefore developed for ligaments
based on a single-integral nonlinear superposition model. This interrelation differs from the
convolution relation obtained by Laplace transforms for linear materials. We demonstrate via
continuum concepts of nonlinear viscoelasticity that such a difference in rate between creep and
relaxation phenomenologically occurs when the nonlinearity is of a strain-stiffening type, i.e. the
stress-strain curve is concave up as observed in ligament. We also show that it is inconsistent to
assume a Fung-type constitutive law (Fung, 1972) for both creep and relaxation. Using published
data of Thornton, et al., (1997) the nonlinear interrelation developed herein predicts creep behavior
from relaxation data well (R ≥ 0.998). Although data are limited and the causal mechanisms
associated with viscoelastic tissue behavior are complex, continuum concepts demonstrated here
appear capable of interrelating creep and relaxation with fidelity.

1.   Introduction
The most common phenomenological model of the viscoelastic behavior of ligaments is the

quasi-linear viscoelasticity model of Fung (1972), which allows time-dependence (viscoelasticity)
and strain-dependence (nonlinearity) of the stiffness. This model has been useful in describing a
number of experiments with ligaments and tendons (e.g. Haut and Little, 1972; Woo, 1982; Woo
et al., 1981; Kwan et al., 1993). Other models include a single integral finite strain formulation
(Johnson et al., 1996) and a hyperelastic finite strain formulation (Pioletti et al., 1998).  In all of
these studies, experiments were performed with deformation control and, hence, the viscoelastic
formulation was only used to describe relaxation response of the tissue. Force driven behavior was
not considered. In a more recent study by Thornton et al. (1997), both creep and relaxation were
investigated. Their data showed that relaxation proceeds much more rapidly than creep (a greater
slope on a log log scale), and they showed that linear viscoelastic theory was not able to
phenomenologically model both behaviors with linearly related constitutive coefficients. This rate
difference between creep and relaxation was consistent with the more clinically focused
experiments of Graf et al. (1994).

Many constitutive relations have been developed for the description of nonlinearly
viscoelastic materials (Schapery, 1969, Lockett, 1972; Findley et al., 1976). Single-integral
formulations are relatively simple but can only handle a subset of viscoelastic phenomena.
Multiple-integral formulations (Green and Rivlin, 1957) are more versatile but also more
complicated.  The interrelation of creep and relaxation is well known for linearly viscoelastic
materials. The interrelation has been studied for some kinds of nonlinear response such as
irreversible creep of metals (Arutyunyan, 1966; Popov, 1947). These studies are not suitable for
ligament. Since they do not involve superposition they cannot be adapted to the general load
histories which occur in the body. The interrelation has been studied for materials  describable by a
particular multiple integral formulation in polymers (Lai and Findley, 1968) or involving single
exponentials (Molinari, 1973). These formulations have not been used to describe ligaments, but
offer that potential. The objective of this study is therefore to develop an interrelation between
creep and relaxation for ligament based on a single-integral quasi-linear nonlinear superposition
viscoelastic model. This model is then used to interpret data existing in the literature (Thornton et
al., 1997).

2.   Analysis
2 .1 Analysis of linearly viscoelastic materials
In linearly viscoelastic materials it is straightforward to develop a relationship between

creep compliance J(t) as it depends on time t, and relaxation response E(t). E(t) is an axial
(Young's) relaxation modulus as distinguished from a shear modulus G(t). The derivative theorem
and convolution theorem for the Laplace transform are used to convert constitutive equations which
are the following Boltzmann integrals,
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σ(t) =  
⌡

⌠

0

t

 E( t  -  τ)
dε(τ)

dτ
dτ , ε(t)  = 

⌡

⌠

0

t

 J ( t  -  τ)
dσ(τ)

dτ
dτ . (1)

to
σ(s) = s E(s)ε(s) and ε(s) = s J(s)σ(s)
respectively. Here s is the transform variable.
In the integral forms, we consider the time scale to begin just prior to time zero, in order that step
function load histories beginning at zero may be accommodated without difficulty with the delta
function which arises from the derivative.
So
σ(s)

ε(s)
  = s E(s) and  

σ(s)

ε(s)
   = 

1
sJ(s)  . (2)

Setting these stress strain ratios equal,

E(s)J(s) = 
1
s2  . (3)

Taking the inverse transform, using the convolution theorem and the relation
L[t] = 1/s2,

∫
0

t

 J ( t  -  τ)E(τ)dτ  =  ∫
0

t

 E( t  -  τ)J(τ)dτ  = t. (4)

The relationship is implicit. Explicit relationships can be developed via Laplace transformation
provided a specific analytical form is given for E(t) or J(t). Power law behavior in time is
particularly simple:
E(t) = At-n. (5)
Taking the Laplace transform of E(t), and using Eq. (3), and recognizing  Γ as the gamma
function, defined as follows for n > 0,

Γ(x)= ∫
0

∞

 tx-1e-tdt . (6)

J(t) = 
1

AΓ(1-n)Γ(n+1)
   tn. (7)

E(t) = 
sin nπ

nπ  
1

J(t) . (8)

So for this example the creep function is also a power law in time.
2.2 Analysis of nonlinearly viscoelastic materials
The following simple nonlinear relation allows for prediction of history dependence. This

single-integral form is called nonlinear superposition, which allows the relaxation function to
depend on strain level.

σ(t) =  
⌡

⌠

0

t

 E(t-τ,ε(τ))
dε
dτ

dτ. (9)

A similar equation may be written in the compliance formulation. Some care is required if step
strain is applied, since the delta function which arises from the derivative should multiply a
function which is continuous at the delta (Schapery, 1999). One may express E(t,ε) as a product,
or more generally as a sum of products or else allow a nonzero risetime in relaxation, to avoid
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mathematical difficulty. In the formulation of Fung (1972), the strain-dependent modulus is
separable into the product of a function of time and a function of strain:
E(t,ε) = Et(t) g(ε). (10)
Separable nonlinear superposition has been widely used in the modeling of ligaments and other
tissue.

Nonlinearly viscoelastic materials cannot be analyzed via Laplace transforms. The
interrelation between creep and relaxation is developed directly here. Write the time-dependent
strain due to a constant stress σc as a sum of immediate and delayed Heaviside step functions in
time H(t),

ε(t) = ε(0)H(t) + ∑
i=0

N
∆εiH(t - t i) . (11)

Each step strain in the summation gives rise to a relaxing component of stress in view of the
definition of the relaxation function.  Here we assume there is no effect from interactions between
the step components, hence we consider single-integral type nonlinear response and exclude
response which must be describable by  a multiple integral formulation.

σc = ε(0)E(t,ε) + ∑
i=0

N
∆εiE(t - ti,ε) . (12)

Divide by σc and use the definition of the creep compliance,

1 = J(0)E(t,ε) + ∑
i=0

N
∆JiE(t - ti,ε(ti)) . (13)

Pass to the limit of infinitely many fine step components to obtain a Stieltjes integral, with τ as a
time variable of integration.

1 = J(0)E(t,ε) + ∫
0

t

E(t - τ,ε(τ))  
dJ(τ,σc)

dτ
  dτ. (14)

The relationship is implicit and for the linear case it is equivalent to Eq. 4. To develop an explicit
form, assume the creep behavior to be separable into a stress-dependent portion and a power law in
time.
J(t,σ) = A(σ) tn  = {g1 + g2σ + g3σ2+ ...} tn. (15)
Assume the relaxation behavior to be as follows. A separable form does not give rise to a solution.
E(t,ε) = {f1t-n + f2ε(t)t-2n + f3ε(t)2t-3n+ ...}. (16)

The creep strain is ε(t) = J(t)σc = atn, with a as the strain amplitude. Substitute Eq. 15 and 16 into
14, and recognize that J(0) for the power law vanishes,

1 = ∫
0

t

{f1(t-τ)-n+f2a(t-τ)n(t-τ)-2n+f3a2(t-τ)2n(t-τ)-3n+...}{g1+g2σ+g3σ2+...}nτn-1  dτ. (17)

Factor the stress-dependent and time-dependent portions,

1 ={g1+g2σ+g3σ2+...}{f1+f2a+f3a2+...} ∫
0

t

n(t-τ)-nτn-1  dτ. (18)

The integral portion gives results ( 1
nπ  sin nπ ) identical to the linear case, Eq. 8, by Laplace

transformation of the integral and an identity involving the gamma function. The stress-dependent
portion is related to the strain dependent portion by inversion of a power series (Abramowitz and
Stegun, 1965).
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f1 = 1/g1. (19)
f2 = -g2/g1

3. (20)
f3 = (2g2

2 - g1g3)/g1
5. (21)

Although the creep behavior was assumed separable, the corresponding relaxation behavior
is not separable. Therefore it is inconsistent to assume a separable, Fung-type constitutive law for
both creep and relaxation. That is, if one used a Fung-type model for creep and another Fung-type
model for relaxation data from the same specimen, the resulting constitutive coefficients would not
be interrelated. The nonlinear material exhibits a relaxation response which contains a sum of
power law terms, as given in Eq. 16.

2.3 Interpretation of ligament data
The ligament data in Fig. 3 of Thornton et al. (1997), described as 'typical', were scanned

from the original article and digitized, and are replotted on a log-log scale in Fig. 1. From about 20
seconds to 1000 seconds, both creep and relaxation curves are fitted by power laws in time, with
correlation coefficients R = 0.998 or better. Creep goes as J(t) ∝ tn with a slope n = 0.028 and

relaxation goes as E(t) ∝ t-m with m = 0.0716. Relaxation predicted from creep using a linear
model gives m = 0.0215. This slope is close to the same value as creep, as expected from Eq. 8
but differs from the actual slope of the relaxation curve. Creep predicted from relaxation gives n =
0.0759, which differs from the actual slope of the creep curve. Predictions based on Laplace
transformation (linear viscoelasticity) are consequently poor.

The nonlinear interrelation developed above allows relaxation to proceed faster than creep
as a result of the series of power law terms. Stress-strain data of Thornton et al. (1997) were
scanned and curve fitted. Below 6% strain, a single term power law curve fit gives σ = 2883ε1.93,

with a correlation R = 0.999, and a two term curve fit with integer exponents gives  σ = 3162ε2 +

11152ε3, with a correlation R = 0.999, and with the quadratic term dominating below 6 % strain.
Curve fitting, with a free exponent, of the actual relaxation data yields a relaxation function E(t) =
1.0946 t-0.0716 and R = 0.999 for a single power term. A single term fit constrained to be quadratic
gives E(t) = 1.002 t-0.056 with R = 0.97. Finally,  E(t) = 0.406 t-0.056 + 0.694 t-0.084  with R =
0.999 for a two term fit. Here the exponents are constrained to be two and three times the exponent
for creep, as required from the nonlinear conversion. As shown in Fig. 1, relaxation predicted
from creep combined with the nonlinearity embodied in the stress-strain curve agrees well with the
relaxation actually observed.

The power law behavior occupies less than two decades of the time scale, therefore results
over more decades would be helpful in future curve fitting. Even so, a  nonlinear interrelation
based on a quadratic fit of the scanned stress-strain curve offers superior prediction of relaxation
from creep in comparison with a linear interrelation, as shown in Fig. 1. The precision of the
stress-strain plot is not known; if a cubic term is admitted, the comparison between observed and
predicted relaxation is even better. We remark that Woo (1982) used an exponential function σ =
A(eBε - 1) to fit the stress-strain behavior, and we observe that over a restricted range of strain, this
is approximated by a quadratic or a cubic function, depending on the range. For larger strains, it is
expected that more terms in the power series will be needed for adequate curve fits.

As for times less than 10 seconds, the data of Thornton et al. (1997) Fig. 3 deviate from a
power-law. However the rise-time of the transient load for creep and extension for relaxation was
not reported. In view of the effect of rise-time, one ordinarily records transient data beginning at a
time a factor of ten longer than the rise-time of the applied load or strain; otherwise errors can occur
(Turner, 1973). Interpretation of this segment of the time scale is not definitive until we know the
rise time. Ligament creep and relaxation are likely follow a power law in time over a wider range
than the 1.7 decades considered here. The ligament relaxation results of Woo (1982), covering five
decades of time down to 0.6 seconds (the rise-time was 0.25 seconds), can be fitted to a power
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law t-0.0625 with a correlation coefficient R = 0.995. This behavior is similar, for time greater than
20 seconds, to that observed by Thornton et al. (1997).

3.   Discussion
The goal of this study was to formulate an interrelationship between creep and relaxation

for ligaments based on continuum concepts and upon available data. Since no experimental data
were collected with the aim of verifying the interrelationship, verification is limited to data available
from Thornton, et al. (1997). The interrelations developed here appear capable of interrelating
creep and relaxation with fidelity. Since mechanical behaviors for various ligaments and tendons
are different, the above interrelationships must be individually tested for fidelity with these and
other tissues.

Ligaments are nonlinearly viscoelastic at physiologic strains of 5 % or less and also at large
strain associated with injury. Their behavior is commonly described by a single-integral nonlinear
superposition constitutive equation referred to as quasi-linear. The quasi-linearity means that there
is no interaction between transients (such as step or pulse functions in time) which occur at
different times. For example, recovery following creep occurs at the same rate as creep in a
material which obeys nonlinear superposition. However one cannot use Laplace transforms to
relate creep and relaxation in a nonlinear superposition type material. The relation developed here
for power-law creep predicts creep and relaxation to proceed at substantially different rates.
Indeed, different rates can be observed in data of Thornton et al. (1997) Fig. 3 in a medial
collateral ligament and from Graf et al. (1994) in a patellar tendon. The present interrelation is
restricted to a particular, albeit commonly used, constitutive equation.

Constitutive equations deal with continuum concepts of stress and strain, not with material
microstructure. Knowledge of the microstructure allows one to explore the causal mechanisms
responsible for material behavior. In tendon and ligament, recruitment of collagen fibers occurs at
increasing loads (Viidik, 1972). Fiber recruitment gives rise to a  nonlinearity of a strain-stiffening
type, i.e. the stress-strain curve is concave up. The present analysis demonstrates that, based on
continuum concepts, such nonlinearity causes relaxation to proceed more rapidly than creep. By
contrast, in a linear material, power law creep and relaxation curves have the same slope.  In a
structural vein, after observing differences in creep and relaxation behaviors, Thornton et al.
(1997) speculated that the differences were due to progressive recruitment of collagen fibers during
creep. If true, then a micromechanical fiber recruitment model (e.g. Hurschler et al., 1997) with a
simpler viscoelastic formulation may give added insight into the physical basis and mechanisms of
the viscoelastic behavior. We observe as a caveat that ligament viscoelasticity studies have been
based on end-to-end (structural) testing which may not fully reveal material properties.
Alternatively, the difference in creep and relaxation may arise from different rates of tension driven
fluid exudation (Vanderby et al., 1999) and osmotically driven fluid imbibation. Regardless of the
source however, the above nonlinear viscoelastic interrelation provides a robust description for
both force driven and deformation driven elongations of ligaments based on available data.

Nonlinear viscoelasticity is known in polymers (Lai and Findley, 1968) and in compact
bone (Lakes, et al., 1979). In some cases, the nonlinear superposition approach appears adequate,
but evidence has been found for time interactions describable by the more general multiple integral
constitutive relations (Ward and Onat, 1963; Lakes and Katz, 1979). It is not known if a separable
(Fung type) single-integral formulation is adequate to describe ligament because the necessary
experiments have not yet been done. One can test for whether the kernel is separable by performing
tests at different load levels. One can test for time interactions by applying load histories with
multiple steps. Since we have found that for creep behavior assumed separable, the corresponding
relaxation behavior is not separable, we recommend a future experimental program involving creep
and relaxation studies at different load and strain levels. Such studies will reveal aspects of
nonlinear viscoelasticity not revealed by current studies which combine a single creep or relaxation
curve and a nonlinear stress-strain curve.
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Figure 1
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Figure 1.  Normalized data of Thornton et al. (1997) for ligament creep J(t), , and

relaxation E(t), •, replotted on a log-log scale. Relaxation predicted from creep
using a linearly viscoelastic (Laplace transform) approach, +,  does not agree with

observed relaxation, •. Use of a nonlinear approach such as a quadratic model, x,
or a cubic model, *, offers better predictive power.


