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Abstract—To explore the hypothesis that mechanic
excitation-induced fluid flow and/or fluid pressure are poten
mechanical transduction mechanisms in bone adaptatio
complementary experimental and analytical modeling effort
been undertaken. Experimentally, viscoelastic tand properties
of saturated cortical bovine bone were measured in both tor
and bending, and significant tand values in the 100– 105 Hz
range were observed, although the nature of the damping is
consistent with a fluid pressure hypothesis. Analytically, mic
mechanically based poroelasticity models were exercised
quantify energy dissipation associated with load-induced fl
flow in large scale channels. The modeling results indicate
significant damping due to fluid flow occurs only above 1 MH
frequencies. Together, the experimental and analytical res
indicate that at excitation frequencies presumed to be ph
ological ~1–100 Hz!, mechanical loading of bone generat
extremely small pore fluid pressures, making the hypothes
fluid-pressure transduction mechanism upon osteocytes un
able. © 2001 Biomedical Engineering Society.
@DOI: 10.1114/1.1385813#

Keywords—Fluid flow, Bone, Porosity, Viscoelasticity.

INTRODUCTION

Living bone is a unique and versatile material with
complex hierarchical microstructure spanning ma
length scales. On one of the smallest scales,~10 nm!,
collagen fibrils and hydroxyapatite microcrystals co
prise a porous bone matrix.6 Interstices between hy
droxyapatite crystals characteristically have sizes of
der 1 nm. Within the bone matrix, bone cells~osteocytes!
reside in grossly elliptical lacunar cavities having min
and major diameters typically in the range of 5–10mm
and 10–30mm, respectively. Typically, lacunar pore
have a volume fraction of approximately 0.02–0.05
cortical bone; Frost7 suggests there are 9000–20,0
osteocytes/mm3. Individual lacunae are connected
each other as well as to Haversian canals by mean
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tubular pores~canaliculi! in the bone matrix. They char
acteristically have diameters of order 100 nm and leng
of a up to a few tens ofmm. Lacunae reside within the
concentric lamellar structure surrounding Haversian
nals. Haversian canals typically have a diameter of or
20 mm and run predominantly in the longitudinal dire
tion of cortical bone. Haversian canals constitute t
Haversian porosity of bone, and comprise approximat
5% of the total cortical bone volume. The osteon is
large cylindrical fibrous structure 200 to 300mm in di-
ameter, consisting of concentric lamellae with a Hav
sian canal at the center. Individual osteons are ceme
together by a ‘‘ground substance’’ that behav
viscoelastically.15 In addition to the viscoelasticity due t
solid viscoelastic constituents including collagen, v
coelasticity in bone can arise from stress-induced flow
bone fluids in the hierarchical network of porosities.

The material structure of cortical bone, a combinati
of bone mineral with viscoelastic materials~collagen and
ground substance!, along with the structural hierarchy
results in cortical bones having a relatively high stiffne
as well as a relatively high ratio of energy dissipated
energy stored~represented by tand, the phase angle be
tween the stress and strain under harmonic loading!.

While the hierarchical structure of cortical bone
interesting, even more so is the fact that living cortic
bone is a ‘‘smart’’ material, able to sense the mechani
loading to which it is subjected, and to adapt acco
ingly. The phenomenon of bone adaptation has been
ognized since the late 19th century when Wolff31 noted
that bone adapts its mass and shape in response to
prevailing conditions of the load, and proposed the b
logical response of bone related to its mechanical en
ronment.

Although the response and adaptation of living bo
to mechanical loading is both recognized a
documented,3,10,20 the underlying causal mechanisms a
not well understood. Several different stimuli have be
hypothesized for bone adaptation including stress31
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720 BUECHNER et al.
strain energy density,5 strain magnitude,27 and strain
rate.19 All of these proposed stimuli have in common th
potential to influence the fluid phase in bones. Str
generated electrical potentials observed in bone,1,8 can
arise from streaming potentials24 in wet bone, which are
also linked to fluid flow.

It has been hypothesized that bone cells are dire
sensitive to hydrostatic pressure.12 The pressure sensitiv
ity hypothesis is supported by evidence that intermitt
pressure affects gene expression of cells25 and that direct
hydrostatic pressure alters the swimming behavior
paramecia, possibly by means of action upon the
membrane.22 An alternate hypothesis is that fluid flow
induced by mechanical deformation, facilities the dist
bution of nutrients and elimination of wastes23 and
thereby stimulates bone cells to initiate remodeling. Ev
more recent is the hypothesis that fluid shearing stre
acting on osteocytes or osteocytic processes are
stimulus that triggers the remodeling process. This
pothesis appears to be supported byin vitro
experiments11 in which cultured fetal osteoblast-like cel
express first and second genetic messengers when
jected to seemingly modest fluid shearing stresses
only 2 N/m2.

The intent of the investigation being reported here
to find experimental evidence of loading-induced flu
flow in bone, whether at physiologically meaningful fr
quencies, or at any other range of frequencies. If sign
cant mechanically induced fluid pressure and fluid fl
were to occur in cortical bone during mechanical loa
ing, it would be expected to be evidenced by a Deb
peak in tand ~or a sequence of Debye peaks in tand!
each spanning approximately one decade of freque
The reason is that the original Biot2 theory for viscoelas-
ticity due to fluid flow predicts a dominant exponenti
behavior in creep or stress relaxation. In the freque
domain, a single exponential, by Fourier transformati
gives a Debye peak.

The Debye function for viscoelastic damping corr
sponds to a peak in tand in the frequency domain. It ha
the following mathematical form:

tand~v!5
D

A11D

vtm

11v2tm
2 , ~1!

where tm5t rA11D is a time constant andt r is a re-
laxation time,v52p f is the angular frequency, andf is
the frequency.

For bending modes of vibration, the relaxatio
strengthD is defined as the change in bending stiffne
during relaxation divided by the long-term bending sti
ness as follows:
s
e

b-
f

.

D5
E~0!2E~`!

E~`!
5E1 /E2 , ~2!

where E(`) is the relaxation modulus at infinite tim
and E(0) is the relaxation modulus at zero time. F
modes involving strictly torsion or strictly compressio
of bone, the shear modulus or the bulk modulus c
replace the Young’s modulusE.

Fluid flowing in each of the respective porosity sy
tems ~nanoporosity in the bone matrix, lacunar
canalicular porosity, and Haversian porosity! gives rise to
a characteristic pressure relaxation time, the inverse
which is a characteristic relaxation frequency. At loadi
frequencies sufficiently below the characteristic fr
quency, fluid would flow freely with minimal pressur
buildup, and thus would not contribute to the viscoelas
behavior of the bone. At frequencies well above t
characteristic frequency, substantial pressure could b
in the fluid, but negligible fluid flow would occur, result
ing in negligible energy dissipation. At loading freque
cies in the vicinity of the characteristic frequency, po
fluid pressures build and then dissipate with fluid flo
each cycle, leading to significant viscoelastic behavior
manifested by tand. Poroelastic modeling of fluid flow in
cortical bone confirms that the combination of fluid pre
sure and fluid flow leads to modest viscoelastic behav
of cortical bone characterized by a Debye peak4,13,14 in
tand.

To that end, an experimental study of damping as
indicator of stress-induced fluid flow was conducte9

Both dry and fully saturated cylindrical specimens
human cortical bone, approximately 3 mm in diamet
and approximately 30 mm in length were tested un
sinusoidal loading from 5 mHz to 5 kHz in bending, an
to more than 50 kHz in torsion. While significantl
larger viscoelastic dissipation was observed in the sa
rated bone specimens as opposed to those which w
dry, no conclusive evidence of a Debye peak was fou
at frequencies of physiological activities or beyond. D
to the relatively small specimen sizes used, the estima
fluid pressure relaxation frequencies in the Havers
porosities were on the order of 1–10 MHz, while rela
ation frequencies associated with the canalicular–lacu
system are estimated to be the order of 100 kHz.

The characteristic frequency of fluid pressure rela
ation is inversely proportional to the squared maxim
drainage distance within the specimen.2 If the pertinent
flow channels traverse the entire specimen to its surf
as the Haversian canals do, larger sized specimens
as those made from bovine bone, would lower the ch
acteristic pressure relaxation frequency, or the charac
istic frequency of the Debye peak in tand. By contrast,
flows in the canalicular drainage system, and in the
noporosity system are not expected to be dependen
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721Dynamic Bone Viscoelasticity
specimen size since they drain to the nearest Haver
canal. In the present study, comparatively large bov
cortical bone specimens of different sizes were studied
a more stringent test of the fluid flow hypothesis.

MATERIALS AND METHODS

Sample Preparation

Bovine femurs were obtained fresh from a loc
slaughterhouse~Cows’R Us Packing House, Cottag
Grove, WI!. Bovine bone was used because it is larger
cortical thickness than human bone, permitting larg
specimens. Since the effective time constant for fl
flow based damping depends on the square of the siz
the specimen, bovine bone offers a more stringent tes
the fluid flow hypothesis. Further, since a Debye peak
one decade wide, it would be detectable if it we
present at or below 100 kHz. The femurs were placed
a cooler with ice and were wrapped in paper tow
saturated with tap water and kept moist during all su
sequent processing. The knee and hip joints were
moved using either a tabletop bandsaw, or a hand h
hacksaw if the size and shape of the femur did not all
the bandsaw to be used. In either case, the femur
continuously wrapped in moist paper towels to keep
bone wet. The bandsaw was used as much as possibl
rough cutting, because its speed allowed the femurs
ited exposure to the air. A low speed diamond saw w
used to cut final rectangular specimens. The specim
was taken from the anterior midshaft section of the b
vine femur. During the cutting of the specimens, a s
ringe filled with Ringer’s solution was used to keep
surfaces of the bone specimen saturated. Figure 1 sh
the cross sectional microstructure of this longitudin
specimen to be classic plexiform structure. This spe

FIGURE 1. Polarized transmission light microscopy image of
a longitudinal bovine bone specimen 0.4 mm thick is pre-
sented showing the classic plexiform structure of bovine
bone. Scale mark is 0.425 mm.
n

f
f

-

s

r

s

men was initially cut with dimensions of 41.8 mm
36.4 mm36.0 mm and an aspect ratio~the ratio of the
largest side dimension over the smallest side dimens
a/b! of 1.067. The specimen was then cut down inc
mentally three times, while keeping the aspect ratio
tween 1.041 and 1.095. Further experimentation w
done on another sample taken from a different bov
femur and prepared in a similar way.

Method and Analysis

Viscoelasticity in the frequency domain is quantifie
by d, the phase angle between stress and strain for a
which is harmonic in time. Tand is the ratio of the
imaginary to the real part of complex moduli, and is al
proportional to the ratio of energy dissipated to ener
stored in a cycle of deformation. The frequency depe
dence of tand can often provide clues as to the unde
lying causes of mechanical energy dissipation. For
ample, if tand shows no evidence of a Debye peak, t
viscoelastic mechanisms would definitely not be asso
ated with fluid flow in pore spaces of a single diamet
On the other hand, if tand shows evidence of a Deby
peak, the underlying viscoelastic mechanism could
fluid flow.

Dynamic material damping properties of the bovi
specimens were studied experimentally in bending a
torsion with the instrument configuration17 shown in Fig.
2. This approach is called broadband viscoelastic sp
troscopy ~BVS! and is capable of measuring the vi
coelastic behavior of materials over eleven decades
time and frequency. In the present work, only the high

FIGURE 2. Schematic diagram of apparatus is shown.
Adapted from Lakes and Quackenbush „Ref. 17….
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722 BUECHNER et al.
frequencies~from 1 Hz to 100 kHz! are studied, since
the lower range has been examined previously.

Harmonic torsional and/or bending loads were appl
to the bone specimen by driving a harmonic volta
across one of two sets of Helmholtz coils using eithe
Stanford Research function generator, Model DS345
a SR850 lock-in amplifier. Viscoelastic properties~modu-
lus and tand of the specimen! were inferred from a plot
of coil current versus light detector voltage output. Th
plot, called a Lissajous figure, is elliptic for a linear
viscoelastic material. Either an oscilloscope orLAB-

VIEW® acquisition software on a Macintosh comput
was used to capture this Lissajous figure.

As previously stated, a Debye peak in the tand fre-
quency spectrum would be potentially indicative of flu
flow in one or more of the porous flow networks in th
bone sample. Subresonant tand is related to the observe
structural phase anglew by

tand5tanw~12~ f / f 0!2!, ~3!

where f 0 is the fundamental resonant frequency,f is the
frequency at which tand is calculated, and the structura
phase anglew is the phase lag between the applied lo
and the resulting deformation measured in the struct
For example, under torsional loading,w is the phase
angle between torque and angular displacement.

The normalized dynamic complianceG of the speci-
men is simply the compliance divided by the complian
at f 51 Hz ~indicated by the subscript zero!.

G5
f0

M0
F f~1 Hz!

M ~1 Hz!G
21

, ~4!

with f as angular displacement andM as applied torque
Normalized compliance is used to infer damping at re
nant frequencies. The normalized dynamic complianceG
based on linear isotropic viscoelasticity, as shown in F
3, is given for torsion as

G5UF S 1

2
rpR4D ~v2L !

cotV*

V*
2I atv

2G21UUpR4

2L
G* U,

~5!

in which v52p f ,

V* 5Arv2L2

G*
, ~6!

andr is the gross mass density of the cortical bone,I at is
the attached mass moment of inertia,L is the length of
the specimen, andR is the radius.

Damping values can be inferred from peaks in t
normalized dynamic compliance,G, curve using the reso
. nance half-width method or a Lorentzian curve fit. The
methods permit study of tand up to 100 kHz in the
present apparatus for a homogeneous material. The r
nance half-width method involves measuring the wid
of the frequency response curve near resonance to i
tand:

tand'
1

)

Dv

v0
, ~7!

whereDv is the full width of the resonance curve at ha
maximum. This is valid if tand is relatively small. For a
lumped system in which the attached inertia is large,
normalized dynamic torsional compliance is

G5A 1

@12~ f / f 0!2#21tan2 d
, ~8!

in which tand, f 0 , and f have the same meaning as
Eq. ~3!. The frequency dependence ofG is referred to as
a Lorentzian function and is a reasonable approximat
of the resonant peak of a distributed system, provided
damping is small. To calculate tand, a single peak in the
compliance curve is normalized to a magnitude of un
at that peak. Experimental data on both sides of the p
are masked beyond frequencies corresponding to
proximately 60% of the magnitude of the peakv0 . The
remaining data are plotted and Eq.~8! is fit to the plot.
This general procedure has been verified in our labo

FIGURE 3. Plot of normalized „to 1 Hz … dynamic compliance
G for PMMA is shown. Experiment „solid line … and theory
show good correlation. Shown for comparison is the pre-
dicted effect of a change in end „magnet … inertia. „Lee, T., R.
S. Lakes, and A. Lal, Resonant ultrasound spectroscopy for
measurement of mechanical damping: Comparison with
broadband viscoelastic spectroscopy. Rev. Sci. Instrum. 71:
2855–2861, 2000.…
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723Dynamic Bone Viscoelasticity
tory on poly~methylmethacrylate! ~PMMA! whose vis-
coelastic properties are well known.

The instrument is capable of measuring the dynam
compliance of bone specimens at up to 100 kHz, p
vided the peaks in the compliance curve are sufficien
smooth. Split peaks, or peaks with too much noise
them are difficult to interpret. Figure 3 shows a plot
the normalized dynamic compliance,G, for PMMA. The
mode structure for PMMA follows that predicted b
theory @Eq. ~5!# over the full range of our apparatus u
to 100 kHz. In Eq.~5!, uG* u is calculated from measure
torque and angular displacement in the subresonant
main, and tand inferred from the width of the first few
peaks in the normalized dynamic compliance,G curve.

The present upper limit in frequency is 100 kHz bas
on the range of the lock-in amplifier, however oth
experimental considerations may restrict the availa
frequency range. For example, the experimental te
niques applied in this study make use of uncoup
modes of vibration. In torsional loading, a dynam
torque is applied to the specimen and the dynamic tw
is measured. Similarly in bending, a dynamic bend
load is applied, and the resulting dynamic curvature
the specimen is measured. Beyond the fundamental
sional mode of vibration, and beyond the fundamen
bending mode of vibration, the bone specimen will ha
many eigenmodes involving both bending and torsi
When such modes are excited, the application of a tor
to the specimen induces both twisting and flexing
sponses, and the application of bending moment indu
both flexing and twisting. This coupling also imposes
upper bound on the range of frequencies that can
studied using these techniques for a particular kind
specimen. For isotropic materials such as PMMA, mo
are not coupled to any significant extent, however h
erogeneous and anisotropic materials such as bone
exhibit mode coupling. The instrument is capable
measuring the dynamic compliance up to 100 kHz, p
vided the peaks in the compliance curve are sufficien
smooth. Split peaks, or peaks with too much noise
them are difficult to interpret.

POROELASTIC MODELING OF BONE

Experimentation was done on bovine bone that
plexiform structure. As with human Haversian bon
there are longitudinal channels containing fluid. Wh
the following poroelastic finite element analysis assum
Haversian structure for the bone matrix, it is thus app
cable to bovine bone because bovine bone has fluid fi
channels comparable in dimensions to those in hum
bone.
-

-

s

n

Permeability and Stiffness Properties

Many of the pores in cortical bone are actually lon
continuous cylindrical channels. At the osteonal sca
Haversian canals are long channels with diameters
order 10–20mm and occupy approximately 3%–10% o
the gross volume of the cortical bone. The effective p
meability associated with Haversian porosity can be
timated by assuming steady, viscous flow in the chann
as described by Scheidegger.29 Relating the fluid-
pressure gradient along a channel to the rate of visc
flow in that channel, and taking into account that t
channels collectively occupy only a fraction of the tot
volume of the bone, the absolute permeabilityK in the
direction of the channels can be estimated by

K5
hR2

8
, ~9!

where h is the volume fraction associated with the p
rosity, and R is the radial dimension of the channel
When applied to the~longitudinal! Haversian porosity,
Eq. ~9! yields an estimated permeability of (1.5– 6.0
•10213m2 in the direction of the Haversian canals, whic
is actually in quite good agreement with the absolu
longitudinal permeabilities measured experimentally
Rouhanaet al.26 Permeabilities used in this work ar
consistent with those measured values. The model
sented assumes that flow in the Haversian canals is
seuille, and the estimated permeabilities are consis
with this assumption. Due to Volksmann canals whi
have a directionality not aligned with the Haversian c
nals, the absolute transverse permeability of cortical b
is typically about one tenth that of the longitudinal pe
meability in the case of human cortical bone. The Ha
ersian canals are assumed to be full of fluid having
viscosity of water at 20 °C. The possibility of the Hav
ersian canals being partially filled with cells and the
processes or with their degradation products has not b
addressed in this work. Clearly though, this would le
to reduced permeability of the bone.

There may be differences between canalicular den
or size between plexiform and Haversian bone. Our
perimental tests were conducted on the former and
simulations on the latter. While we have no estimates
these quantitative distinctions, model parameters co
be easily adjusted were we to have such information

Poroelastic Modeling of in vitro Cortical Bone
Experiments

Unit Cell Micromechanical Analysis.The interaction,
during mechanical loading, of fluid filled Haversian c
nals with the bone matrix in which they are embedd
can be modeled using unit cell micromechanical analy
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724 BUECHNER et al.
techniques. An array of regularly spaced cylindric
fluid-filled Haversian canals is embedded in what is
sumed to be an isotropic, linear elastic bone matrix. T
unit cell of the periodic material microstructure consis
of a rectangular prism with a cylindrical hole containin
fluid. Macroscopic stresses and/or macroscopic stra
can be applied to this unit cell, while enforcing perio
icity of both displacements and tractions on t
boundaries.30 When the unit cell is loaded in this manne
two different assumptions can be exercised with reg
to the fluid in the canal:~1! in the first, it is assumed tha
the fluid does not have sufficient time to flow, and so
can carry a fraction of the stress being transmit
through the unit cell and~2! in the second, it is assume
that the fluid has ample time to flow out of the unit ce
so that any fluid pressure generated by the loading
completely relieved. The first results in so-calledun-
drained behavior of the medium, and the second resu
in fully drained behavior.

To describe how stresses applied to Haversian b
are apportioned between the Haversian fluid and
solid bone matrix, a classical poroelastic2 type constitu-
tive model is employed:

S s
pf D5S C G

GT Z D S e
z D , ~10!

where s is the total stress in the bone,e is the total
strain, pf is the fluid pressure, andz is the change in
fluid content. Furthermore,C, G, and Z are constant
moduli describing the coupling between the bone ma
and the Haversian fluid under different forms of loadin
Both drained and undrained numerical experiments w
performed on the unit cell model to compute the effe
tive poroelastic coefficients in Eq.~10!. In performing
the unit cell analysis, it was assumed that the bone
trix is linear, isotropic, and elastic with a Young’s mod
lus of 12 GPa and Poisson’s ratio of 0.4, and that
fluid is inviscid with a bulk modulus of 2.1 GPa.

Poroelastic Modeling of Haversian Bone.From a macro-
scopic structural perspective, the gross characteristic
fluid flow in cortical bone undergoing mechanical loa
ing can be modeled by treating the bone as an an
tropic poroelastic medium, with the permeability an
stiffness characteristics as described in Eqs.~9! and ~10!.
As Haversian bone is loaded, the bone matrix and
Haversian fluid will not necessarily move together. Usi
the classical Biot linear momentum balance equations
both the solid matrix and pore fluid moving together, a
for the pore fluid moving relative to the bone matrix, o
can solve for the coupled motion of both phases:
-

f

-

s i j ,i2r
]2

]t2 uj2r f

]2

]t2 uj
f50, ~11!

2p, j
f 2Rji

]

]t
ui

f2r f

]2

]t2 uj2
r f

h

]2

]t2 uj
f50.

Above,s i j is the total stress tensor in the bone describ
in Eq. ~11!, r is the bulk mass density of the saturat
bone,uj is the displacement vector of the bone matr
r f is the fluid mass density,uj

f is the fluid displacemen
relative to the bone matrix,pf is the fluid pressure,h is
porosity, andRi j is the flow resistivity tensor which is
inversely proportional to the absolute permeabilities j
described, and proportional to the shear viscosity of
fluid. When external loads are applied to saturated c
tical bone, both the bone matrix and the bone flu
share the load and thus contribute to the overall stiffn
of the medium. However, fluid pressure gradients lead
fluid flow from the regions of higher pressure and
modest stiffness relaxation occurs. Mechanical energ
dissipated as drag forces between the fluid and s
phases do work.

Using the finite element codeFENDAC developed by
one of the authors~Swan!, which has the ability to solve
Eq. ~11! for both the bone matrix displacements and flu
displacements, while utilizing the constitutive poroelas
model Eq.~10!, a finite element model of the cylindrica
bone specimens was discretized into hexahedral trilin
poroelastic continuum elements. This numerical mo
was employed first to compute the response of the c
tical bone to a step function loading in order to note t
characteristic times required for the fluid pressure to
cay. Following the step-loading analysis, the numeri
model was exercised to compute the frequency respo
of cortical bone during dynamic bending, and in partic
lar, to compute the tand associated with fluid flow. In all
poroelastic finite element method~FEM! computations
involving the bone cylinder, the bottom surface of th
cylinder was completely fixed, and loading was appli
through the top surface. Vanishing fluid-pressure bou
ary conditions were imposed on all surfaces of the mo
except for the bottom surface. When the model of Ha
ersian bone is subjected to dynamic bending excitation
eventually achieves a steady state harmonic respo
Once the model achieves the steady state response,d
values are computed simply by calculating the pe
stored energy per cycleEstored, and the total energy dis
sipated per cycleEdiss. The loss tangenttand is then
computed using its standard definition as

tand5
Ediss

2pEstored
. ~12!

In the experiments, bovine specimens oriented alo
the longitudinal direction were used. The vascular por
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725Dynamic Bone Viscoelasticity
ity in such specimens tends to be largely parallel to
long axis of the bone. In the computational models, ho
ever, one can compute the poroelastic response of
cylinder when the vascular channels are aligned with
long axis of the cylinder, and when the channels
orthogonal to the cylinder axis. Computations in t
former case are said here to have a longitudinal orie
tion of the bone, and computations in the latter case
said here to have a transverse orientation of the bon

Results of Poroelastic Modeling

Computed Fluid Pressure Relaxation Behaviors.The
computed fluid pressure response of a saturated cor
bone model with a Haversian porosity of 10%, to
step-function uniaxial stress, decays over periods m
sured in microseconds. The behavior of the bone dur
the initial time steps represents the undrained, short-t
response, whereas that when the pressure decays re
to the drained behavior. In the undrained regime,
pore fluid pressure in longitudinally loaded bone is a
proximately 7.9% of the applied stress whereas in tra
versely loaded cortical bone, the undrained average fl
pressure is approximately 9.2% of the applied stre
Thus, uniaxial stress loading of cortical bone in dire
tions orthogonal to the Haversian canals have the po
tial to generate slightly stronger flows.

For the size of bone specimens considered and
anisotropic stiffness and permeability properties utiliz
in the models, a relaxation time of approximately 1ms is
computed in the transverse loading case, whereas in
longitudinal case loading, the relaxation time is appro
mately 50 ms. Zhanget al.32 have reported compute
pore pressure relaxation times of approximately 1.4ms
for fluid in the Haversian system.

The pore pressure relaxation times produced by
finite element model can be confirmed using general
tions of classical one-dimensional consolidation the
as described by Biot.2 The characteristic pore pressu
relaxation time of a poroelastic medium with bidire
tional drainage can be approximated as

t5
amH2

ZK*
, ~13!

where Z is the storage modulus of the medium in E
~10!, K* is an appropriate directional absolute perm
ability value, H is the maximum distance any fluid pa
ticle must travel to exit the porous medium,m is the
shear viscosity of the pore fluid, anda is a dimension-
less parameter between 0.10 and 0.20 accounting
whether drainage occurs in one or two directions. For
bone parameters assumed in this work, the stor
modulus of bone was computed to be 17.2 GPa us
unit cell homogenization techniques, and the fluid sh
e

-

l

-

es

.

-

e

r

viscosity was taken to be that of water at 20 °C. App
ing Eq. ~13! and these values to the largest bone cylind
specimens of this study yields an estimated relaxat
time of approximately 1ms when the bone is oriente
longitudinally, and 0.2ms when it is oriented trans
versely. These times are consistent with the values c
puted using the poroelastic FEM model.

Computed tand Results.Using the technique described i
the section on poroelastic modeling of Haversian bo
the dynamic bending excitation experiments were m
eled over a wide range of fixed frequencies. At stea
state for each loading frequency, tand was computed and
plotted versus the frequency for both longitudinal a
transverse material orientations as shown in Fig. 4. T
computational results shown are for the largest bov
specimens, and predict that fluid flow in the Haversi
system due to bending gives rise to peaks in tand oc-
curring within the frequency range of 105– 106 Hz. For
the smaller specimens studied experimentally in this
fort, the computed peak tand frequencies would be eve
larger. The results of Fig. 4 also indicate that if th
material orientation in the bone cylinders were transve
to the long axis of the cylinders, the resulting dampi
due to fluid flow would be substantially larger than th
when the material orientation is aligned with the cylind
axis.

EXPERIMENTAL RESULTS AND DISCUSSION

Bovine bone was used because it is larger in corti
thickness than human bone, permitting larger specime
Since the effective time constant for fluid-flow bas
damping depends on the square of the size of the sp
men, bovine bone offers a more stringent test of

FIGURE 4. Computed tan d responses of the bone cylinder
poroelastic model under axial bending for an assumed Hav-
ersian porosity of 10% are shown. The computed responses
indicate that when Haversian canals are aligned with the
longitudinal axis of the cylinder, less damping due to fluid
flow would be expected.
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726 BUECHNER et al.
fluid-flow hypothesis. Since a Debye peak is one dec
wide, it would be detectable if it were present at
below 100 kHz.

Torsion

Figure 5 shows the torsional tand and normalized
dynamic modulusuG* u/G0 for two longitudinal samples
of bovine femur, one with dimensions of 41.8 m
36.4 mm36.0 mm, and the other 41.1 mm35.1 mm
34.9 mm. For the larger sample, tand at 1 Hz is 0.096,
and at 100 Hz is 0.061, withG0 at 1 Hz equal to 4.88
GPa and a shear strain,gxy , at 1 Hz equal to 3.75
31028. For the smaller sample tand at 1 Hz is 0.063,
and at 100 Hz is 0.029, withG0 at 1 Hz equal to 6.04
GPa, with a shear strain,gxy , at 1 Hz equal to 5.30
31028. The strain was so small because a small driv
magnet was used in order to achieve the widest poss
frequency range.

Figure 6 shows the normalized~to 1 Hz! dynamic
compliance,G for the 41.8 mm36.4 mm36.0 mm speci-
men. The compliance curve follows the expected patt
for a homogeneous material up to about 40 kHz, beyo
which there is a multiplicity of modes, preventing
straightforward interpretation of tand. The lack of clear
higher modes in the dynamic compliance curve is pr
ably not caused by samples of large size, otherwise
dynamic compliance curve for smaller samples wo
show clear higher modes, which they do not. It is m
likely due to the coupling of modes with bending
extension due to the anisotropy and heterogeneity
bovine bone. For comparison, Fig. 3 shows the agr

FIGURE 5. Plot of torsional tan d, and normalized dynamic
shear modulus zG* zÕG0 for longitudinal 6.4 mm Ã6.0 mm bo-
vine bone „Specimen A … and longitudinal 5.1 mm Ã4.9 mm
bovine bone „Specimen B … are shown. The normalizing shear
modulus for Specimen A is G0„1 Hz…Ä4.88 GPa. The normal-
izing shear modulus for specimen B is G0„1 Hz…Ä6.04 GPa.
ment between the theoretical and experimental dyna
compliance curves for PMMA, an isotropic homog
neous material.

The resonance half-width method of determining tad
was used at resonant frequencies. For the first pea
Fig. 6, tand was 0.071, for the second 0.07, and for t
third 0.067. This leads us to believe we are not climbi
up on a peak in the torsional tand curve, associated with
a Debye peak, up to about 40 kHz.

The dynamic compliance curve for the second spe
men, dimensions 41.1 mm35.1 mm34.9 mm, looks
similar to Fig. 6 and is not shown. For this curve, th
Lorentzian curve fit method was used to determine
tand of the peaks. For the first peak tand was 0.066, for
the second 0.041, for the third 0.077, and for the fou
0.043. There is still no evidence of a Debye peak up
about 60 kHz. The ratio of signal to noise in the da
limits the size of a possible Debye peak which could
resolved over the background. Signal quality is sufficie
such that a peak of magnitude anticipated by the fin
element analysis would be easily visible. A size effect
tand and shear modulus were observed, and are att
uted to the compliance and viscoelasticity of the cem
lines.

Results of similar sized samples from other bovi
femurs and smaller sized samples, not presented for
sake of brevity, disclose no evidence of Debye type flu
flow in torsion for bovine bone.

Bending

Results for bending tests include values for tand at 1
and 100 Hz for each iteration of specimen size. Figur
shows the bending tand for two longitudinal samples of
bovine femur, one with dimensions of 41.8 m
36.4 mm36.0 mm and an aspect ratio of 1.067, and t
other 41.1 mm35.1 mm34.9 mm and an aspect ratio o

FIGURE 6. Plot of torsional normalized „1 Hz… dynamic com-
pliance G for longitudinal 6.4 mm Ã6.0 mm bovine bone is
shown. This is representative of all torsional dynamic com-
pliance plots for bovine bone.
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727Dynamic Bone Viscoelasticity
1.041. For the larger sample, tand at 1 Hz is 0.044, and
at 100 Hz is 0.125. For the smaller sample, tand at 1 Hz
is 0.032, and at 100 Hz is 0.047. Due to the noise in
system between 60–120 Hz, the values of tand near 100
Hz are not presented in Fig. 7.

Figure 8 shows the normalized~to 1 Hz! dynamic
compliance,G for the specimen of dimension 41.8 m
36.4 mm36.0 mm. This compliance curve displays ev
dence of mode coupling; results could only be obtain
up until about 10 kHz. Beyond this point, modes are t
dense for interpretation of tand. The bending spectrum i
also different from the torsion spectrum, in which mod
occur at 1, 3, 5, etc. multiples of the lowest reson
mode. The bending spectrum does not follow such
simple pattern. For clean resonant peaks, we can de
mine tand by using the resonant half-width method d
scribed previously. Again, due to the anisotropy and h

FIGURE 7. Plot of bending tan d for longitudinal 6.4 mm
Ã6.0 mm bovine bone „Specimen A … and longitudinal
5.1 mmÃ4.9 mm bovine bone „Specimen B … is shown.

FIGURE 8. Plot of bending normalized „1 Hz… dynamic com-
pliance G for longitudinal 6.4 mm Ã6.0 mm bovine bone is
shown. This is representative of all bending dynamic com-
pliance plots for bovine bone.
-

erogeneity of bovine bone, there is probably cro
coupling of modes at the higher end of the frequen
spectrum; modes in which there is any question of int
pretation were not used for calculations.

For the curve shown in Fig. 8 the Lorentzian curve
method was used to determine the tand of the peaks. For
the first peak, tand was 0.059, for the second peak whic
is a possible coupling with the resonant mode in t
transverse direction, 0.10, and for the third 0.030. Th
is actually a decrease in tand between the first and third
peaks; neglecting the second peak as a coupling with
resonant mode in the transverse direction, it appears
we are not climbing up on a peak in the bending tad
curve, associated with a Debye peak, up to at least
kHz.

For the specimen of dimension 41.1 mm35.1 mm
34.9 mm, the dynamic compliance curve is similar
that shown in Fig. 8. For this curve, the Lorentzian cur
fit method was used to determine the tand of the peaks.
For the first peak, tand was 0.052, for the second pea
0.042, and for the third 0.068. There is some instabi
in the tand values but it appears as though we are n
climbing up on a peak in the bending tand curve, asso-
ciated with a Debye peak, up to at least 20 kHz. Bend
results from similar sized samples from other bovi
femurs and from smaller sized samples, not included
the sake of brevity, also disclose no evidence of Deb
type fluid flow.

Comparison With Prior Ultrasonic Studies

Results of the present study are compared in Fig
with results of a variety of experiments, including plan
wave transmission ultrasonics,16 direct damping measure
ments of Garneret al.9 and damping derived from relax
ation results of Lugassy and Korostoff21 and of Sasaki
et al.28 The behavior in the 100 kHz to 1 MHz range
suggestive of a peak in damping near or slightly below
MHz. This is a frequency range that is difficult to exam
ine experimentally, since it exceeds the range for B
and other methods which make use of resonance an
at the low end for study of ultrasonic wave velocity an
attenuation.

CONCLUSIONS

The largest bovine bone samples disclosed no da
ing peak attributable to poroelastic fluid flow up to 10
kHz. Corresponding poroelastic finite element modeli
indicated the damping peak expected from fluid flow
the larger channels of diameter on the order 20mm
should be at frequencies on the order of 1 MHz. Tha
consistent with the present results, with the prior work
Garner et al.9 on smaller samples of human bone, a
with prior ultrasonic wave attenuation results for bon
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728 BUECHNER et al.
The results indicate the pressure sensitivity hypothe
for transduction of stress to bone cells~osteocytes! ap-
pears untenable. However, it is possible that cells
spond to fluid flow since at physiological frequenci
flow rather than pressure occurs.
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