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Abstract
Lattice microstructures are presented with zero coefficient of thermal expansion. These are made of
positive expansion materials. The behavior is primarily stretch dominated, resulting in favorable
stiffness. Behavior of these lattices is compared with that of triangular and hexagonal honeycombs
in a modulus-density map. These lattices do not undergo thermal buckling, in contrast to designs
based on sub-lattices.

Introduction
Thermal expansion 1 of materials is pertinent in the context of materials that in service may

experience temperatures which vary considerably. Materials of zero or minimal thermal expansion
can enable designs of structures that are dimensionally stable as temperature varies. By contrast,
extremely large expansion is of interest in the context of composite theory and in applications in
actuators controlled by temperature changes. In homogeneous crystalline materials thermal
expansion is attributed to slight nonlinearity (anharmonicity) of the interatomic potential. It has
been therefore considered to be a property intrinsic to each material and not subject to control.   
    Composite materials had been thought to be limited in their expansion by the expansion
coefficients of the constituent phases. Specifically the bounds for the thermal expansion coefficient
α of isotropic composite materials  2  of two solid phases in terms of constituent coefficients of
thermal expansion α1 and α2 , bulk moduli K1  and  K2,   are as follows

α = α1V1 + α2(1 -V1), (1)
α = α1V1 K1 / K + α2(1 -V1) K2  / K , (2)

in which V1 is the volume fraction of phase 1 and K is the bulk modulus of the composite. The
composite expansion can clearly be no higher or lower than that of either of the constituents. Such
analysis suggests extremely high expansion is not possible and that zero expansion composites
require a constituent of negative expansion. Negative expansion materials such as zirconium
tungstate, are known though they are not typical structural materials 3 4 5 . Bounds on thermal
expansion as with bounds on elastic modulus of composites 6 7 8 depend on assumptions that the
two phases are perfectly bonded, that there is no porosity, and that each phase has a positive definite
strain energy. Bounds can be useful to predict possible ranges of properties of composites or
biological tissues in which the structure is so complicated that one cannot easily analyze the relation
between structure and physical properties. However, if one relaxes any of the assumptions, it
becomes possible to exceed the bounds. Specifically one can attain expansion values higher than
the upper bound or lower than the lower bound.

For example by allowing porosity (void space), with two solid phases of different expansion,
one can achieve arbitrarily high positive or negative thermal expansions 9 in lattices or honeycombs.
The lattices and honeycombs contain rib elements each of which is a bi-layer made of two bonded
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layers of differing thermal expansion coefficient.  Such lattices are in contrast to honeycomb or
foam with homogeneous ribs for which the thermal expansion 10 is the same as that of the solid
from which it is made. When provided with this concept, it is then possible to design high
expansion composites with the aid of topology optimization 11  . The amount of void space can tend
to zero, giving rise to dense composites with slip interfaces. These also can exhibit extreme values
of expansion 12 .   Three-phase bounds (which also assume positive definite strain energy) 13 14

may be then be applied to lattices when provided with the notion of importance of void space. Large
regions of the expansion - modulus map are made accessible via two and three dimensional cellular
solids with bi-material rib elements. Positive or negative expansion values of arbitrarily large
magnitude or zero are possible 15 . Expansion tends to zero as the rib curve angle becomes small.

Zero expansion materials and structures are at times designed to be stiff. In that vein it is
expedient to distinguish structures that are bend dominated from those that are stretch dominated.
Hexagonal honeycombs (two dimensional lattices) with initially straight ribs of material with
modulus Es of thickness t and length l  governed by rib bending and have elastic modulus E  as
follows 10:

E/Es = 2.3 (t/l)3. (3)
Triangular cell lattices 10, 16 are stretch dominated and are therefore stiffer.

E/Es = (√3/2) (t/l). (4)
Ribs in triangular lattices were assumed to be attached by pin joints to simplify the analysis to
include only axial force. By contrast a hexagonal lattice with pin joints has zero structural rigidity
therefore the ribs must be solidly joined. The lattices and foams designed to achieve extremely high
or negative expansion have highly curved ribs and are bend dominated, hence relatively compliant.
Here we present triangular lattices with ribs with minimal curvature, to attain higher stiffness.

Lattice design
The lattice entails a 2D honeycomb lattice designed to obtain a zero thermal expansion while
simultaneously maximizing the material’s mechanical stiffness and providing immunity from
thermal buckling.  The lattice thermal expansion coefficient (CTE) is determined as a function of
geometrical and material parameters and the result is used to design zero expansion lattices.
Moreover the overall mechanical stiffness is determined. Additionally, interpretation of analytical
results is provided with the intent of gaining useful design insight.

The honeycomb lattice structure analyzed is shown in Figure 1. It is composed of curved bi-
material rib elements. The two materials have differing thermal expansion coefficients which subject
the rib element to deformation attributed to bending as well as axial deformation. This allows,
through the careful tuning of geometric and material property parameters, an overall thermal
expansion coefficient of zero. A triangular cell was chosen to maximize stiffness, since at small
curvatures the mechanical stiffness is dominated by axial deformations. The following sections will
explain how the thermal expansion coefficient and mechanical stiffness are determined analytically.
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Figure 1 showing a lattice structure composed of equilateral triangular cells made of curved bi-
material rib elements. Material one, with a smaller thermal expansion coefficient, is shown in white
while the higher coefficient of expansion material two, is shown in black.

Results
Thermal expansion coefficient α     

The thermal expansion coefficient α (CTE) of the lattice is calculated from the axial
displacement of each rib element in the lattice due to temperature change. The analysis, as with the
high expansion lattices, is based on that of Timoshenko 17 for bi-material curved bars. Assumptions
made include the usual elementary bending assumptions of a slender bar subject to small deflection,
properties that remain constant in time, an ideal slip free joint between materials in each rib, plane
sections remain plane. Moreover in the context of the lattice, rib elements are assumed to be
connected by pin joints so they transmit only a force, and that the ribs do not contact each other;
also that the curve angle is small. In prior study 15 of lattices of extreme expansion, some
simplifying assumptions were used to aid design and visualization. Specifically, it was assumed that
the circumferential extension of the element is negligible compared to the change in geometry
caused by bending, also, that the rib element is composed of materials having equal thicknesses and
Young’s moduli.
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in which α1   and α2 are the component materials’ thermal expansion coefficients, t is the total
thickness of the rib, Larc is the length of the rib element and θ is the included angle. If the angle is
not too large, this expression assumes a simpler form, with t = h1 + h2,  α = (l/t) (α1 - α2) (θ / 12).

For the small curvatures required to attain zero expansion the axial extension can no longer
be neglected. In the present analysis the general form given by Timoshenko is applied to bi-material
bars with small curvature in which stretch, shear and bend all contribute to the deformation. A
generalized form which allows for differing material thicknesses as well as Young’s moduli was
obtained 9 from the bi-material bar relations 17.
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For sufficiently small angles Equation 2 reduces to the following.
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The variable m is the ratio of material one’s thickness to material two’s thickness and n is the ratio
of material one’s Young’s modulus to material two’s Young’s Modulus.

The longitudinal expansion term is derived from the longitudinal strain at the material interface
described by Timoshenko 17  . The axial thermal expansion term is obtained by dividing by the
change in temperature and by assuming sufficiently small angles ( so that sin θ ≈ θ ) as in Equation
4.
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The axial term is added directly to the previous result for thermal expansion due to rib bending to
obtain the total overall CTE of the rib element. This CTE is also the macroscopic value for the lattice
structure depicted in Figure 1. The total thermal expansion coefficient is given by Equation 5.
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From this relationship, it is possible to tune the CTE to be zero by carefully choosing geometric and
material properties. The graph shown in Figure 2 shows the included angle theta necessary to
achieve an overall CTE of zero. The rib aspect ratio, AR, is the ratio the rib arc length to the rib
thickness. Each of the curves represents a different aspect ratio for comparison. Material one was
considered to be Invar, while steel was used as material two. The thermal expansion coefficient
values for materials one and two were 1 and 12 (µstrain /K) respectively 18 (ASM International,
2002). For this plot typical modulus values of 140 GPa 19 for Invar and 200 GPa for steel were
used. The plot was obtained by numerically varying the invar fraction, which is the percentage of
total rib material that is invar, from zero to one hundred and then solving for the required angle θ in
order to achieve a zero thermal expansion.
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Figure 2 shows the required curvature in terms of included angle versus the proportion of Invar, for
various rib aspect ratios.

In order to maximize stiffness it is desirable to have a smaller included angle which corresponds to
a less curved rib element. An optimum value for invar fraction is observed at approximately 45
percent. The angle can also be reduced by specifying the rib element to be more slender. Slender
ribs entail a more compliant lattice.

Equation 5 determines the theoretical thermal expansion for a triangular honeycomb made of curved
bi-material rib elements. This equation allows for the thermal expansion to be optimized to zero. In
order to optimize the material stiffness a similar equation for the total material stiffness is required.

Lattice elastic modulus
The equation for overall mechanical stiffness Young’s modulus EH of the lattice is obtained by first
finding the relationship for the deformation in terms of an applied load P. This analysis relies on
the assumption that the rib elements are pin connected at the lattice nodes. Figure 3 shows the
loading state on a single rib element.
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Figure 3 showing the loading used for determining the deformation of a single element.

The horizontal deformation of the rib element can be found by applying standard formulae 20 for
circular arches. Application of these formulae results in three deflection terms. The first term is a
result of bending, the second a result of axial deformation and the third term is a result of shear
deformation. They are given below as Equations 6-8, where G is the effective shear modulus of the
entire rib element.
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To obtain the total deformation these three terms are summed Structural spring compliance (Jstr) is
expressed as the deformation normalized by load P. Plots showing all three structural spring
compliances versus the included angle are given in Figure 4 and Figure 5. The Invar fraction was
set to 45 percent and rib aspect ratio to 10 and 25. Typical modulus values of 140 GPa 21 and 200
GPa were used for the stiffness values of Invar and steel respectively.
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Figure 4 shows a comparison of the three terms contributing to horizontal structural spring
compliance versus the included angle for a rib aspect ratio of 10.

Figure 5 shows a comparison of the three terms contributing to horizontal structural spring
compliance versus the included angle for a rib aspect ratio of 25.
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Figure 4 indicates that it is possible to obtain a rib in which the largest term in the compliance is
axial deformation rather than bending for relatively large included angles. It also can be seen that
the shear deformation term can be neglected for the range of included angles that are practical.
Figure 5 demonstrates that more slender the rib elements become bending dominated at smaller
curve angles. The effect of shear deformation is negligible for both rib aspect ratios and is neglected
in the sum of deformations. Equation 9 provides the total horizontal deformation for a given load P.
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Once the horizontal deflection is solved for the overall mechanical stiffness for the triangular
honeycomb can be obtained by applying the same technique used by Hunt 16 . The ribs are
approximated as pin connected and thus act as two-force members. This method results in identical
equilibrium equations as those derived by Hunt. This derivation accounts for the differing geometry
and the additional bending deflection term. The total mechanical stiffness of the honeycomb lattice
depicted in Figure 1 is given by Equation 10.
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It is worth noting that as the included angle approaches zero an identical equation to that of Hunt’s
is obtained. The parameters of Equation 10 were varied numerically. The plot in Figure 6 shows
the total stiffness of the honeycomb structure versus Invar fraction. Each curve represents a
different rib aspect ratio, and is constrained to have an overall thermal expansion coefficient of zero.
Material properties used are typical for Invar and steel.
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Figure 6 shows total mechanical stiffness versus the Invar fraction for various rib aspect ratios.
Thermal expansion is constrained to be zero.

An optimal Invar fraction exists of approximately 45%. It can also be seen that by reducing the
slenderness of the rib elements the overall stiffness is increased. Reducing the slenderness too far,
however, invalidates the assumption of slender beams leading to a larger discrepancy between the
predicted and actual values of thermal expansion and stiffness.

Figure 7 shows normalized elastic modulus vs. rib thickness ratio (t/Larc) for zero expansion steel-
invar triangular lattices with curved ribs, compared with theoretical plots for triangular and regular
hexagonal lattices with straight ribs. The theoretical lines after Gibson and Ashby 10  show that an
axially dominated lattice structure has relative stiffness following a curve proportional to the ratio
t/L whereas a bending dominant structure’s relative stiffness 10 is proportional to the ratio (t/L)3.
The specific equations relating relative stiffness for euilateral triangle and regular hexagon lattices
are given by Equations 11 and 12 respectively, from Gibson and Ashby 10.
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The zero expansion lattice follows the same slope as the equilateral triangular lattice but a factor of
3.4 lower in modulus. By contrast the bend dominated hexagonal lattice is a factor of 92 more
compliant than the stretch (axial) dominated triangular zero expansion lattice for L/t = 25; the factor
increases with slenderness. Therefore the present zero expansion lattice is axial dominated with a
modest stiffness reduction due to a superposed bending of the curved ribs.
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Figure 7 compares analytically determined stiffness ratios for optimally designed curved rib zero
expansion lattices with elements composed of Steel and Invar with straight rib triangular lattices

that are fully axial dominated and hexagonal lattices that are fully bending dominated.

Discussion
The lattices presented here contain bi-material ribs. It is also possible to make lattices of low or

zero expansion using several kinds of ribs each of which is homogeneous 22. Such lattices will
provide zero expansion and high, near optimal stiffness if the temperature range is not too great but
they will buckle under sufficient temperature because each kind of rib has a different expansion
coefficient. For example, the critical buckling load of a pin end column of circular section of
diameter d and length L, Young’s modulus E and section moment of inertia I is Pcr = π2EI/L2 with I
= πd4/64 for a round section. The corresponding buckling strain is εcr = (π2/16) (d/L)2.  For d/L =
1/25,  the strain for buckling is 0.001. Ribs made of aluminum alloy with α = 24 ppm/°C, if fully
constrained by another lattice, will experience a strain ε = αΔT and will buckle under a temperature
difference of only ΔT = 42 °C. If the second lattice has nonzero expansion, it will provide a partial
constraint so the allowable temperature range will be greater but not by much. For environments
that impose greater temperature excursions, the present lattices offer the advantage of no buckling
of ribs under temperature changes at the expense of a moderate reduction in stiffness.

Minimal or zero thermal expansion can also be achieved in two phase composites (without void
content) with inclusions of negative expansion or of negative stiffness 23. Composites with negative
stiffness inclusions via incipient phase transformations have extremely high damping capacity 24;
also, extreme Young's modulus 25 exceeding that of diamond but thermal expansions have not been
measured in these.
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Conclusion
Triangular lattices of curved bi-material ribs are designed that provide zero thermal

expansion and a stiffness approaching that of a fully axial dominated lattice. The modest penalty in
stiffness is compensated by the fact that these lattices are not subject to thermal buckling.
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