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Mode structure maps for freely vibrating cylinders over a range of Poisson’s ratio, ν, are desirable
for the design and interpretation of experiments using resonant ultrasound spectroscopy (RUS). The
full range of isotropic ν (–1 to +0.5) is analyzed here using a finite element method to accommodate
materials with a negative Poisson’s ratio. The fundamental torsional mode has the lowest frequency
provided ν is between about –0.24 and +0.5. For any ν, the torsional mode can be identified utiliz-
ing the polarization sensitivity of the shear transducers. RUS experimental results for materials with
Poisson’s ratio +0.3, +0.16, and –0.3 and a previous numerical study for ν = 0.33 are compared with
the present analysis. Interpretation of results is easiest if the length/diameter ratio of the cylinder is
close to 1. Slight material anisotropy leads to splitting of the higher modes but not of the fundamental
torsion mode. © 2011 American Institute of Physics. [doi:10.1063/1.3559305]

I. INTRODUCTION

Resonant ultrasound spectroscopy (RUS) allows the
experimenter to determine elastic or viscoelastic moduli
by measuring the resonance structure of various compact
specimen geometries such as cubes, parallelepipeds, spheres,
and cylinders. Typically, the sample is supported at two
contact points by piezoelectric ultrasonic transducers; one
for excitation and other for detection. Corners or edges
provide weak elastic coupling to the transducers, hence
minimally perturbing the vibration modes. Excessively
strong coupling can shift the resonant frequencies and create
parasitic damping. The RUS approach is simpler than other
methods in that the specimen does not need to be glued,
clamped, or aligned. The complexity of the method enters in
the numerical procedure usually used to extract mechanical
properties from the resonances.1 Numerical inversion allows
determination of all the elastic modulus tensor elements of an
anisotropic material from the resonance spectrum. However,
at least five resonant modes are typically required for each
elastic constant to be found. If some modes are too weak to
observe, the algorithm may not converge; the experimenter
then may iteratively reposition the specimen, complicating
the process. In materials of high damping, resonances are
broad enough that higher ones overlap; the algorithm will not
converge.

For isotropic materials it is expedient to study diagrams
of modal frequency as a function of Poisson’s ratio, com-
monly referred to as Demarest plots, for the purpose of
experiment planning and interpretation. With such a plot,
one can also extract moduli and damping simply without
numerical inversion. Demarest provided the classic example
for isotropic cubes2 of Poisson’s ratio between 0.05 and 0.45.
A Demarest plot is useful in the following contexts. RUS is
used to study the properties of materials that undergo solid
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state phase transformations. Mechanical damping increases in
the vicinity of phase transformations,3 broadening resonance
peaks. Higher order modes then become difficult to resolve;
therefore is helpful to be able to infer the stiffness moduli
from a small number of low order modes. For example, it was
impossible4 to resolve peaks using a commercial RUS system
if damping Q−1 exceeded 0.02. In this case 26–28 peaks were
analyzed for an isotropic polycrystalline solid to obtain the
shear and bulk moduli as well as the mechanical damping.
Polymers and rocks also have sufficiently high damping
that only the lowest modes can be resolved. A Demarest
plot can aid mode location if some basic information about
the specimen is known prior to the experiment to guide
the experimenter to a smaller frequency window. In the
context of numerical extraction of properties, a Demarest
plot can guide the requisite initial guess used as input to the
algorithm.

In addition to the Demarest plot for isotropic cubes, the
modal structure for a solid sphere5 was also determined an-
alytically and has been plotted for Poisson’s ratios between
0 and 0.5. To plot them a transcendental equation must be
solved. A Demarest plot for a solid cylinder over a range
of Poisson’s ratio has not been presented, though modes for
cylinders of length approximately equal to diameter (within
0.5%) were presented6 for a single Poisson’s ratio 0.33.
Isotropic cylinders were also evaluated7 using numerical in-
version of resonance structure for up to ten modes. Moreover,
a plot inclusive of the full range of isotropic Poisson’s ratio is
desirable since materials having negative Poisson’s ratio have
been developed.

In the present work, the mode structure for a short cylin-
der (length L equal to diameter D) is determined numerically
and plotted for the full range of Poisson’s ratio, ν, from –1 to
0.5. Results are compared to previous numerical analysis by
others and with experimental results for materials of positive
and negative Poisson’s ratio. The effect of slight anisotropy
and of variation of aspect ratio is also explored.
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II. NUMERICAL ANALYSIS

Cylindrical models were created using the commercial
finite element code ABAQUS on a PC. For the mode struc-
ture as a function of Poisson’s ratio ν, isotropic solid cylin-
ders with varying length to diameter aspect ratios from 0.75:1
up to 2:1 were created using 3D, deformable solid models
with ν varying from –0.999 to 0.5 by increments of about 0.1.
The software accepts the full isotropic range of Poisson’s ra-
tio allowed by positive definite stability criteria (but neither ν

= –1, nor below). No symmetries were assumed in the
modeling to avoid exclusion of asymmetric deformation
modes. Swept meshes of reduced integration, quadratic
3D stress Hex dominated elemental meshes were applied
from global seeds (with curvature control) of a minimum
size of 0.06. All meshes contained around 5000 elements.
Hex elements are hexahedral with 20 nodes per element;
nodes are located at each corner and at the midpoint be-
tween adjacent corners. Mesh refinement shows that solu-
tions converge using only a few hundred elements; a denser
mesh was chosen to accurately visualize complicated mode
shapes. For the isotropic case, a Young’s modulus, E, of
70 GPa, Poisson’s ratio of 0.3 and density of 2700 kg/m3

were initially assumed, then the Poisson’s ratio was var-
ied. The shear modulus, G, was calculated through the usual
isotropic relation E = 2G(1 + ν). To assess the effects
of mild (5%) anisotropy, a number of materials were sim-
ulated with various combinations of the nine independent
orthotropic engineering constants and are summarized in
Table I. Mild anisotropy may occur in the processing of poly-
crystalline materials as in casting of metals. For the isotropic
case, the elastic constants are independent of direction.

Mode shapes and frequencies were determined using
the linear perturbation and frequency analysis module.
Eigenvalues were computed using the Lanczos solver, with
acoustic-structural coupling and an initial frequency shift
of 40 Hz, the first 100 eigenvalues were retained for each
cylinder. Computational time was less than 10 min for the
first 100 eigenvalues.

III. EXPERIMENTAL

Samples were of circular cylindrical shape with length
equal to the diameter. Samples were polymethyl methacrylate
(PMMA) 25 mm in diameter, fused silica (amorphous SiO2;
Technical Glass, Painesville, OH) 9.95 mm in diameter and

TABLE I. Orthotropic material models used in the anisotropic analysis.

Set E1
a E2 E3 ν12 ν23 ν13 G1

a G2 G3

Isotropic 70 70 70 0.3 0.3 0.3 (26.9) 26.9 26.9
1 70 70 70 0.3 0.3 0.3 26 26 24.7
2 70 70 70 0.3 0.3 0.3 24.7 26 26
3 70 70 70 0.3 0.3 0.3 27.3 26 24.7
4 70 73.5 66.5 0.3 0.3 0.3 26 26 26
5 70 70 70 0.3 0.285 0.315 26 26 26
6 70 73.5 66.5 0.3 0.285 0.315 27.3 26 24.7

aE and G are in units of GPa. The value for G in the isotropic case is calculated from E
and ν and is shown in the parenthesis.

an open cell copper foam (Astro Met Associates, Inc., Cincin-
nati, OH). PMMA was cut from a rod, milled, and polished.
Fused silica was cut from a rod with a diamond saw. The foam
was processed by sequential plastic deformations of a cubical
piece8 to achieve a negative Poisson’s ratio. This specimen
was then shaped to a cylinder 26 mm in diameter by abrasive
machining. Dimensions were measured with a micrometer;
mass was determined with an analytical balance.

Transducers used were Panametrics V153 1.0/0.5 broad-
band shear, polarized with center frequency 1 MHz. The
driver was excited via a synthesized function generator (Stan-
ford Research DS 345). Shear transducers provide a stronger
signal than compressional transducers for some modes, es-
pecially for the crucial fundamental torsion mode.9 The out-
put of the receiver transducer was amplified by a preamplifier
with a bandpass of 100 Hz–300 kHz and gain from 100 to
1000. The function generator has a frequency resolution of
1 μHz, and an accuracy of 5 ppm. For low damping materials
such as fused quartz, the resonant frequency can be resolved
to within 1 Hz or about 5 ppm. For PMMA, which has high
damping, frequency resolution was about one part per thou-
sand. Better resolution could be achieved via longer averaging
times or a lock-in amplifier but was not necessary for the pur-
poses of this study. Signals were captured on a digital oscillo-
scope (Tektronix TDS 3012B); signal averaging over 16 cy-
cles was used when appropriate to improve the ratio of signal-
to-noise for polymer samples of high damping. Contact force
was adjusted by moving one transducer with a fine microm-
eter drive (vertical stage, Newport type MVN50) and was re-
produced among tests by measuring the feed-through signal
at a frequency well below the lowest mode and reproducing
that signal. Contact force can perturb modulus and damping
measurement. The effect is usually small (0.1%) in the natural
frequency and introduces a baseline damping that is pertinent
in low damping materials. Contact force was controlled and
minimized in these experiments, translating to a small system-
atic error. As for deviations from ideal dimensions, the effect
is much less than the width of the data points for quartz and
PMMA. The copper foam had a pore size of about 1/2 mm; its
surface roughness limited the resolution of dimension mea-
surement; mode splitting due to slight anisotropy exceeded
any shift due to variance in dimensions.

The torsion mode was identified by rotating the speci-
men with respect to the direction of shear motion parallel
to the transducer surface; this is the polarization direction.
Specifically, referring to Fig. 1, alignment of the cylinder edge
parallel to the polarization axis maximizes response for tor-
sional modes; the orthogonal alignment produces a minimal
response in torsion but a large response to other modes.

The torsion natural frequencies are given by

f = m

2L

√
G

ρ
. (1)

Here, f is the measured frequency in hertz, L is the sample
length, G is the isotropic shear modulus, ρ is the sample den-
sity, and m is an integer. For the fundamental, m = 1. This
frequency is the lowest one for short cylinders provided Pois-
son’s ratio exceeds about –0.24.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp



035105-3 T. Jaglinski and R. S. Lakes Rev. Sci. Instrum. 82, 035105 (2011)

FIG. 1. (Color online) Schematic diagram of the RUS apparatus. (a) Polar-
ization oriented for maximum response in torsion. (b) Polarization oriented
for minimum response in torsion but maximum in bending or symmetric axial
modes.

The shear modulus was determined by identification of
the lowest torsion mode and use of Eq. (1) and Poisson’s ratio
was determined by aligning the observed mode structure with
the Demarest plot. Numerical inversion was not used.

Damping was determined via tan δ = (1/
√

3) �ω/ω1, in
which ω1 is the angular frequency at a resonance and �ω rep-
resents the full width of the resonance curve at half maximum
amplitude. This approximation is appropriate for tan δ < 0.2.

IV. RESULTS

A. Numerical results: Effect of Poisson’s ratio on
modes

A Demarest plot of the numerically determined mode
structure is shown in Fig. 2. Frequencies are normalized to
the first torsional mode. The modes shown in Fig. 2 are the
first 20 modes calculated over a range of Poisson’s ratio ν.
Kinks in the curves are due to the discrete values of ν cho-
sen. As can be seen, the present numerical results are in good
agreement with those obtained by Senoo and Nishimura6 for
a cylinder with ν = 0.33 and L/D = 1.005 (open triangles in
Fig. 2 for a smaller number of modes). The Demarest plot
shows that the fundamental mode of an isotropic cylinder
is torsion for a range of Poisson’s ratio from approximately
–0.24 to +0.5. For –0.24 < ν < –0.7, the fundamental mode
is a predominantly bending mode (B1 in Fig. 2), transitioning
to the first symmetric axial mode (SA in Fig. 2), for ν < –0.7.
The B1 mode has a sufficient slope with respect to Poisson’s
ratio to allow its determination; it is the second or third mode
for ν > –0.24. By contrast, in the cube, the first mode with
much slope in Poisson’s ratio is the fifth for ν > 0.25. So the
cylinder allows easier interpretation of elastic constants from
the first few modes in comparison with the cube.

Representative mode shapes are shown in Fig. 3; the tor-
sion mode shown as an inset in Fig. 2 is independent of Pois-
son’s ratio ν. Minimum and zero displacement appears as dark
blue in color online, and dark gray in black and white. Max-
imum displacements appear as red and medium gray, respec-
tively; intermediate displacements are yellow, green, and light
gray, respectively. For torsion, the maximum displacements
occur at the cylinder edges in equal and opposite directions;
zero displacements occur along the axis of rotation and on the

FIG. 2. (Color online) Demarest plot of the mode structure vs Poisson’s ra-
tio for an isotropic cylinder with length equal to diameter. The first 20 modes
and their dependence upon ν are shown. Modal frequencies are normalized
to the fundamental torsion frequency. Experimental points are indicated as
(+) or (×). Calculations from Senoo et al. are shown as open triangles. SA
(diamonds) refers to symmetric axial modes, or those dominated by bulk be-
havior over a range of Poisson’s ratio, S (solid triangles) is a shear dominated
mode, B1 (solid squares) is the lowest bending mode and B2 (solid circles)
is a mixed mode. Only a few point shapes for each mode shape are shown to
not obscure the data points. A representative mode shape for torsion is also
shown.

surface at the midpoint between edges. For the SA, B1, S, and
B2 modes shown in Fig. 3, motion occurs everywhere along
the edges. For the S mode, a displacement minimum occurs in
a region at the center of the curved surface. For the B1 mode,
there are two displacement minima on the curved surface pro-
vided ν > –0.1. The B2 mode exhibits minima on the curved

FIG. 3. (Color online) Representative mode shapes and their dependence on
Poisson’s ratio for the first few modes including the first symmetric axial
mode (SA), the lowest bending mode (B1), a shear mode, (S) and a mixed
mode (B2). All mode shapes shown are for cylinders with length equal to
diameter. Colors represent magnitude of displacement; for interpretation of
color (or shading), refer to the text.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp



035105-4 T. Jaglinski and R. S. Lakes Rev. Sci. Instrum. 82, 035105 (2011)

FIG. 4. (Color online) Behavior of modes that depend on ν. Normalized fre-
quencies calculated for modes that depend on Young’s modulus E, shear mod-
ulus G, or bulk modulus K.

surface, and in the center of the flat end surface. While in the
present work the torsion mode is identified via polarization
sensitivity of shear transducers, it is also possible to discrim-
inate among modes by placing compressional transducers at
different locations on the specimen.

FIG. 5. (Color online) Mode frequencies normalized to the first torsional
mode for a short cylinder, L/D = 1. The first bending mode (B1, solid
squares) and the first (SA, solid diamonds) and second (SA2, open diamonds)
symmetric axial modes show the greatest bulk dependence. The mode shape
for SA2 (ν = 0.3) is also shown; its appearance does not appreciably depend
upon ν.

No modes are bulk dominated over the full range of
Poisson’s ratio as seen by comparing Fig. 2 with Fig. 4
which shows normalized frequencies versus Poisson’s ratio

FIG. 6. (Color online) Effect of weak material anisotropy on mode structure (points). The 1-direction is along the cylinder’s long axis. The mode structure is
normalized to the fundamental torsional mode. Horizontal lines indicate the isotropic mode structure for E = 70 GPa and ν = +0.3. For cases 4 and 5, G1
= G2 = G3; for case 6, all nine material constants differ.
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FIG. 7. (Color online) Effect of aspect ratio (length/diameter) on mode struc-
ture for an isotropic cylinder with a constant ν = 0.3.

for modes that depend on shear modulus G, Young’s mod-
ulus E = 2G(1 + ν) or bulk modulus K = 2G(1 + ν)/3(1
– 2ν). The region for Poisson’s ratio tending to –1 is of inter-
est in the context of stability of materials that undergo phase
transformations in which the bulk modulus softens. Behavior
of bulk type (K) and bending type (E) modes is similar as ν

= –1 is approached. Modes for the short cylinder normalized
to the fundamental torsion frequency include several that tend
to zero for small Poisson’s ratio tending to –1 (Fig. 5), hence
are bulk dominated in that regime. The lowest bending mode
(B1) has a bending character for all Poisson’s ratio; indeed the
dependence on Poisson’s ratio reveals behavior dominated by
Young’s modulus E. The shear mode (S) frequency is essen-
tially independent of Poisson’s ratio for positive ν; because it
shows some sensitivity for negative ν, it is not purely shear.
Modes, which depend only on G, have a constant value in a
Demarest plot since all frequencies are normalized to the first
torsion mode which depends only on G. The first SA mode
acquires a volumetric character for negative Poisson’s ratio;
indeed in that regime it is sensitive to the bulk modulus. For

positive ν there is substantial shear in this mode as indicated
by nonuniform shape change, specifically large lateral con-
traction near the center of the curved surface relative to the
ends of the cylinder. The mixed mode (B2) has a complex
shape but is shear dominated for positive ν. The second sym-
metric axial (SA2) mode, shown as an inset in Fig. 8(a), has a
shape suggestive of plate bending; it is sensitive to ν, but for
positive ν it has a relatively high frequency.

B. Numerical results: Effect of material anisotropy on
mode structure

Several cases of material anisotropy (Table I) were ex-
amined to determine their effect on the mode structure of or-
thotropic short cylinders. Shear moduli, Young’s moduli and
Poisson’s ratio were independently perturbed 5% from the
isotropic form. It was found that splitting of the fundamental
torsional mode does not occur but higher modes are split for
orthotropic short cylinders as shown in Fig. 6. Similarly the
solution for spheres reveals no splitting of the lowest mode,
but cylinders are usually easier to fabricate than spheres. By
contrast, the torsional mode for cubes and parallelepipeds is
split into two resonance peaks. Hence, even in the presence
of slight anisotropy, short cylinders are an amenable geome-
try, coupled with shear polarized transducers, to quickly iden-
tify the torsional mode and to infer the shear modulus G
= 2[C55

−1 + C66
−1]−1 for any Poisson’s ratio without the

need for computer inversion.

C. Numerical results: Effect of aspect ratio

The effect of aspect ratio (the ratio of length to diameter
L/D) on modes for a Poisson’s ratio of 0.3 is shown in
Fig. 7. The lowest mode is torsional for L/D between about
0.87 and 1.94. Small deviations from L/D = 1 have the
following effect on the form of the fundamental vibrational
mode. A 1% increase in length decreases the frequency of
the fundamental torsion mode by 1% and increases the ratio
between the frequencies of the first torsional and bending

FIG. 8. (Color online) Dependence of the first few modes upon ν for isotropic cylinders with aspect ratios of (a) 0.75 and (b) 1.5. Alternate orthogonal views of
the B2 mode shape from Fig. 3 are shown in (a).
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TABLE II. Values of material properties inferred from the torsional modes.

Material Diameter (mm) Length (mm) L/D Density, ρ (g/cc) ν ftorsion (kHz) G (GPa) tan δ

PMMA 25.54 25.40 0.995 1.2 0.3 26.8 1.9 2.2 × 10−2

SiO2 9.96 9.95 0.999 2.2 0.16 189.8 31.4 4.7 × 10−4

Cu foam 25.5 25.5 1 0.514 –0.3 5.03 0.12 3 × 10−4

modes, ftorsion/fbending by less than 1%. For ν = 0.3, the effect
of small variations in aspect ratio do not greatly perturb
the relative order of the first few modes below the second
torsional harmonic. Some authors prefer elongated speci-
mens (L/D ≥ 2.5) for rock cylinders10 to be interpreted via
numerical algorithms, so the lowest mode is bending, with
some sensitivity to the longitudinal wave speed. These rock
specimens were anisotropic.

The effect of aspect ratio for a range of Poisson’s ratio is
shown in Fig. 8. For L/D = 0.75, the lowest mode is a mixed
shear mode with a slight dependence on Poisson’s ratio for
ν > –0.4, as shown in Fig. 8(a). For L/D = 1.5, the lowest
mode is torsional for ν > –0.05; the second mode in that
range is bending. The bending mode is sufficiently close to
the torsion one for Poisson’s ratios associated with common
materials that interpretation would be difficult for high damp-
ing materials. By contrast, the mode structure for L/D = 1,
Fig. 2, is more favorable for interpretation because the
torsional mode is the lowest one for ν > –0.24 and is well
separated from the others for ν > 0, allowing immediate
extraction of the shear modulus and its damping. Moreover,
after the shear modulus is determined from the torsion mode,
the bending mode provides a good measure of Poisson’s ratio
over its full range.

D. Experimental results

Experimentally determined mode structure for the
PMMA, SiO2, and Cu foam cylinders are plotted in compar-
ison with the numerical results in Fig. 2. Table II contains
the measured frequencies and inferred shear moduli from
the torsional modes. Modes were verified as torsional by the
polarization sensitivity with respect to the shear transducer
orientation. Cylinders were rotated 90◦ from the shear
polarization direction and the response amplitude decreased
dramatically for the torsion modes. No modes below the
torsion fundamental were observed for PMMA and SiO2.
An instrumental resonance near or below 1 kHz was easily
recognized by its low frequency and broad response. The
shear modulus inferred from Eq. (1) for PMMA, 1.9 GPa,
is consistent with reported values at ultrasonic frequencies
and about twice the modulus observed at quasistatic low
frequency; the modulus for SiO2 is also consistent with
literature values. Matching the obtained frequencies with
the numerically determined mode structures gives Poisson’s
ratios of +0.3 and +0.16 for PMMA and SiO2, respectively,
again reasonable for these materials. It is notable that use of
the Demarest plot allows extraction of the modulus and Pois-
son’s ratio of PMMA even though the damping (determined
via resonant peak width measurement) is sufficiently high
that some higher resonances overlap, which would preclude

a numerical inversion. Indeed, Demarest suggested that G
be extracted from a cube mode independent of Poisson’s
ratio, then to extract Poisson’s ratio from one or more higher
modes.

As for the copper foam specimen, the torsional reso-
nant frequency was 5.03 kHz, similarly verified as torsion;
the shear modulus was calculated to be 120 MPa, reasonable
in view of the density. However, the torsional mode was not
the fundamental mode for this material. A nontorsional mode,
identified as such since it was observed in both polarizations,
occurred at a lower frequency than the torsional mode. The
Poisson’s ratio of the re-entrant copper foam was determined
to be about –0.3 as shown in the mode structure of Fig. 2.
Some splitting of the first mode as well as higher modes was
observed and is attributed to a slight anisotropy, reducing the
precision in inferring Poisson’s ratio. The damping of copper
foam was about 3 × 10−4.

V. CONCLUSIONS

A Demarest plot of mode frequency versus Poisson’s
ratio ν was generated numerically. The fundamental mode
for a short cylinder with length equal to diameter (L = D)
transitions from torsion to bending for ν = –0.24 and then a
symmetric axial, or bulklike, mode for ν < –0.7. The present
numerical results are in good agreement with previous
calculations (for ν = 0.33) and present RUS experiments
for cylinders with negative and positive Poisson’s ratios. A
negative Poisson’s ratio for the Cu foam was inferred from
the modal structure by identification of a mode below the
torsional by virtue of the fact a lower mode was detected in
both shear polarizations. For the other cylinders, no modes
below the fundamental torsion were detected.

Small (5%) material anisotropies do not split the funda-
mental torsion mode for short cylinders and spheres, but do
split the fundamental for cubes and parallelepipeds. This was
also observed in the Cu foam as a splitting in modes other than
the torsional; the splitting did not interfere with interpretation.

As for aspect ratio, deviations from L = D of 1% shift
the resonant frequency by only 1%. A 10% deviation does
not greatly perturb the relative order of the modes up to the
first torsional harmonic (for ν = 0.33). Short cylinders with
L/D = 1 are favorable for interpretation because the torsional
mode is the lowest one, well separated from the others for ν

> 0, allowing immediate extraction of the shear modulus and
its damping. In this case bending is the second or third mode,
with sufficient slope to readily extract Poisson’s ratio.
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