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Abstract

Lattice structures based on bimorph rib elements are fabricated and studied experimentally.
The effective piezoelectric sensitivity d is observed to be much larger, by a factor of at least
10,000, in magnitude than that of material comprising the lattice ribs. Bending of the ribs in
response to input voltage is responsible for the large sensitivity.

1 Introduction

Piezoelectric materials when stressed mechanically produce an electric polarization and when an
electric field is applied, they deform. They are always anisotropic. Specifically [1], under isothermal
conditions, the strain εij depends upon stress σkl via the elastic compliance Jijkl, upon electric field
Ek in piezoelectric materials with sensitivity modulus tensor dkij at constant temperature. Moreover
the electric displacement vector Di depends on electric field via Kij which is the dielectric tensor
at constant stress and temperature.

εij = Jijklσkl + dkijEk (1)

Di = dijkσjk +KijEj (2)

If there is a phase angle between pairs of field variables, material properties associated with
response to sinusoidal input in time become complex quantities [2] in the context of viscoelasticity
(phase δ in the compliance), dielectric relaxation, and piezoelectric relaxation (phase φpiezo).
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Piezoelectric ceramics have the greatest sensitivity of charge to force, d33, in the reduced nota-
tion, 100 to 600 pC/N. This is in comparison with 10 to 20 pC/N for piezoelectric polymers. The
sensitivity of displacement to input voltage has the same value, provided the material is elastic; the
units pm/volt are equivalent to pC/N.

Piezoelectric composite materials may have a variety of inclusion microstructures including
particulate, fibrous, platelet. Piezoelectric composites offer increased electromechanical coupling
efficiency, also a decrease in specific acoustic impedance, and suppression of unwanted modes of
vibration in comparison with homogeneous piezoelectric ceramic materials. As for two-phase com-
posites with simple geometry, effective piezoelectric coefficients have been calculated [3] and are
of rule of mixture form. For composites with more complex geometry, bounds on various physical
properties have been developed [4]. Elastic properties of two-phase composites are governed by
upper and lower bounds obtained by Hashin [5], and by Hashin and Shtrikman [6]. Thermoelastic
properties of two phase composites are bounded [7]. The bounds are weighted averages of the
expansion values of the constituents. Bounds for piezoelectric composites [8] [9] are known.

Bounds can be exceeded in several ways. For example, arbitrarily high positive or negative
thermal expansions can be achieved in lattice type composites with void content [10] [11] or in dense
composites with interfaces that allow slip. Such composites contain rib elements that themselves
have composite microstructure, corresponding to a low level of structural hierarchy [12]. Lattices
can exceed the limits imposed by bounds that tacitly assume there is no void space and no slip
between constituents.

Piezoelectric lattices were designed and analyzed [13]. The effective piezoelectric sensitivity d
can be arbitrarily greater in magnitude than that of material in the ribs. Piezoelectric lattices
based on two dimensional chiral honeycomb [14] with a negative Poisson’s ratio approaching -1
(highly auxetic) are also possible.

A triangular piezoelectric lattice [13] is shown in Figure 1. Rib elements consist of piezoelectric
bimorph elements. Such elements undergo bending in response to an electrical signal. Each rib
in the lattice consists of two layers of piezoelectric material, arranged as a bimorph. A voltage is
applied to such a rib gives rise to piezoelectric deformation in which one layer expands, and the
other layer contracts, giving rise to bending. In Figure 1, dark and light shading of the the ribs
denotes different polarization directions of layers in the bimorph ribs. Some electrical connections
from +, - electrodes are schematically indicated by thin lines.

A summary of the analysis [13] is as follows. Ribs in the lattice in Figure 1, are free to bend
unless the lattice is subject to a constraint. The deflection u per volt V for a single bimorph
cantilever rib of length L and full thickness h containing two anti-parallel piezoelectric layers of
sensitivity d31 (in the reduced notation) and thickness h/2 is [15] u/V = −3

2d31[
L
h ]2. The lattice

of bimorph ribs contains multiple cells of angle θ between ribs: n cells thick in the z direction, m
cells thick in the x direction. The effective sensitivity is:

deff33 = −d31
3

2

2n

4
(1 + sin(

θ

2
))[
L

h
]2. (3)

The sign of deff33 depends on the rib orientation. Interchange of layers results in a reversal of
sign. This sensitivity is much larger in magnitude than the intrinsic piezoelectric coefficient of the
material from which the ribs are made, as a result of the enhancement of displacement by bending.
For the lattice shown, n = 2 and θ = 60◦.

In the present research, we fabricate and test piezoelectric lattices based on composite rib ele-
ments. We observe that effective piezoelectric sensitivity d of the lattice can be orders of magnitude
greater than that of material in the ribs.
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2 Methods

A triangular unit cell was made containing containing three bimorph elements. Lattice ribs were
commercial bimorph elements, called stripe actuators by the manufacturer [18]. These had length
L = 48.5 mm, width w = 2 mm and thickness h = 0.6 mm, with electrodes near the ends. Further,
a lattice of the configuration shown in Figure 1 was assembled. Rib ends were cemented with
polymeric glue. Spacers were PMMA plastic. The lattice was oriented vertically. Support was
proved by the bottom two spacers; the one on the right was cemented to an optical breadboard
and the one on the left consisted of a roller, 6 mm in diameter, to provide vertical support but
minimize constraint on the horizontal motion. Electrical input to the unit cell or lattice was via
a SRS type DS345 synthesized function generator amplified by an Avtech amplifier. Displacement
was measured using an LVDT (Trans Tek, 240-000). This was calibrated using a micrometer driven
vertical stage. First the LVDT core was attached in a vertical orientation to a spacer at the top
of the lattice to determine vertical motion and infer deff33 . The LVDT core was then attached in a
horizontal orientation to the left corner of the lattice to determine horizontal motion and, from low
frequency response infer deff31 . Response and phase angle were determined vs. frequency of input
signal to determine the sensitivity and intrinsic phase at low frequency as well as the resonant
response. The deformation signal and the electrical drive signal were monitored vs. time using
a digital oscilloscope (Tektronix TDS 3012). The phase angle between the input voltage and the
lattice deformation was measured using a SR 850 lock-in amplifier.

Experiments were also done using square wave excitation. Mechanical and electrical excitation
were applied in separate experiments. Mechanical excitation was achieved by providing a second,
larger, bimorph cantilever 10 mm wide, 60 mm long, 0.6 mm thick, with its end near the unit cell
or lattice. Electrical input to this cantilever was a square wave; sudden input and release of contact
force provided the transient input. Square waves revealed the vibration following an impulse and
the free decay of vibration associated with mechanical damping. The damping was obtained from
transient response from the time t1/e for decay of vibration to a factor 1/e of an initial value and

the period T of oscillation via tanδ = 1
π

T
t1/e

.

Damping may also be enhanced in piezoelectric elements by attaching an electrical circuit that
exhibits resonance or has a feedback amplifier [16] or is resistive or resonant [17]. Specifically,
an appropriate electrical impedance connected to the circuit provides mechanical damping via the
electromechanical coupling that occurs in piezoelectric materials. In the present experiments a
resistor matched to the lattice capacitance was used to study such damping. For experiments with
mechanical excitation, the resistor was placed across the unit cell or lattice. For experiments with
electrical excitation, the resistor was in series with the lattice; the function generator itself has a
much lower source impedance, about 50 Ω.

3 Results

The observed effective sensitivity in the z direction for 13 V p-p electrical input at 10 Hz of a
single triangular unit cell for displacement between the center of the bottom and the top of the
triangle was deff33 = 2.1 µm / volt. The effective sensitivity of the lattice was deff33 = 9.4 µm
/ volt. This is far greater than the intrinsic sensitivity of the layers in the ribs, no more than
0.5 nm / volt for the best piezoelectric ceramic that may be used in the ribs. The manufacturer
quotes a 30% tolerance for the sensitivity of each bimorph element. There are 30 ribs in the lattice
and 8 ribs in a representative deformation path from top to bottom of which four are aligned to
give a full sensitivity contribution. The full lattice should be six times as sensitive as a single
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Figure 1: Triangular piezoelectric lattice structure. Small rectangles represent stiff spacers that
transmit the bending motion among adjacent cells.

triangle based on Equation 3. The maximum deviation between single cell and lattice sensitivity
based on the manufacturer quoted tolerance is a factor of 1.3. Moreover, the lattice is not ideal
in that the joints have some rigidity from the glue joints and there may be some friction. The
theoretical prediction of large sensitivity of the lattice is supported by experiment. Sensitivity
values represent magnitudes. The sign of d sensitivity is understood in the context of electrical
contact at the surfaces of homogeneous media or of materials that can be homogenized into an
effective continuum. The lattice does not have this kind of electrical connectivity, so a magnitude
is reported. As for horizontal sensitivity for input at 5 V p-p and 10 Hz, the effective sensitivity of
the lattice was deff31 = 2.9 µm / volt. It was necessary to reduce the drive signal to obtain stable
response because at high amplitude input the roller moved with time, changing the boundary
condition, hence the signal. Linearity was checked by verifying that the response to a sinusoidal
input was also sinusoidal.

Response of the lattice in the z direction to sinusoidal electrical input is shown in Figure
2. Response of the lattice in the x direction to sinusoidal electrical input is shown in Figure 3.
Resonance is clearly shown in both x and y directions; the fundamental frequency differs because
the displacement transducer LVDT core, which has some inertia, was attached at a different location
for each measurement. Damping inferred from ratio of the height of the fundamental resonant peak
to response at low frequency was tan δ = 0.2 for motion in the z direction and tan δ = 0.2 for
motion in the x direction. This is considerably larger than the value obtained for the individual
rib. Viscoelasticity of the glue joints is expected to result in increased damping of the lattice. Also
there are multiple modes, closely spaced, complicating the interpretation so these damping values
are reported to one significant digit.

The mechanical damping of a single rib was inferred from free decay of vibration following a
mechanical impulse upon the rib element, Figure 4 (a). The damping was tan δ = 0.05 at the
fundamental natural frequency of the cantilever, 139 Hz. Transient response of the triangular unit
cell and of the full lattice to an electrical square wave at 10 Hz is shown in Figure 5. As anticipated
from the lattice frequency response, considerable damping is manifested in the transient response.
For the triangular cell the damping was tan δ = 0.18; for the full lattice, it was about 0.3. The
triangular cell and the full lattice clearly have higher damping than a single rib as revealed by
transient response in Figures 4 (b) and 5. Because there are multiple modes closely spaced, inference
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Figure 2: Frequency response of lattice showing resonance. Displacement in the z direction divided
by input voltage.

of a quantitative value of damping from the lattice response is problematical. Multiple modes in the
full lattice response give rise to a complex time response. The effect of added electrical resistance
is to enhance the damping to a value greater than 1 for the triangle cell. For the lattice, it appears
that the resistance causes the vibration to damp out more rapidly, but the background damping
is already high, and the multi-mode response makes it difficult to precisely quantify damping at
resonance. It is notable that electrical excitation favors the fundamental mode while mechanical
excitation causes more response at higher modes.

As for piezoelectric phase angles in the response to electrical input, the tangent of phase angle
between input voltage and displacement for a single rib as a cantilever was tan φpiezo = 0.03 at
a frequency 1 Hz and 10 volts p-p. This is the ratio of the imaginary part to the real part of
deff33 for the bimorph rib. This is conceptually different from the mechanical damping. For the
full lattice, Figure 2, at low frequency 1 Hz, well below resonance, the piezoelectric phase between
voltage and displacement waveforms was tan φpiezo = 0.07 in the z direction and tan φpiezo = 0.04
in the x direction. It appears that viscoelastic damping in the joints in the lattice contributes to
piezoelectric phase angle.

4 Discussion

The present piezoelectric lattice was assembled from commercial bimorph elements. For macro-
scopic or microscopic lattices, one may also use prototype methods previously used for composites
[19]. Polymeric lattices [20] called micro-truss structures have been made by using controlled beams
of light to polymerize a precursor liquid containing monomer; they are not piezoelectric. Lattices
can be made with any cell size from macroscopic to nano-scale. There is no length scale in the
classical theory of elasticity or piezoelectricity. The piezoelectric lattice has effective properties but
it should not be viewed as an equivalent continuum. The reason is that this piezoelectric lattice
receives electrical input via connectivity to appropriate ribs within the lattice structure rather than
at the surface as is the case for homogeneous materials. That gives rise to a dependence of effective
sensitivity on the number of cells in a particular direction. Such behavior is similar to that of stacks
of axial piezoelectric elements; these have electrical connectivity such that a low voltage applied
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Figure 3: Frequency response of lattice showing resonance. Displacement in the x direction divided
by input voltage.

results in a sum of displacements of each element.
The piezoelectric sensitivity of this lattice is much greater than that of the rib constituents.

Such sensitivity exceeds bounds for two-phase composites. Mathematical bounds for two phase
composites do not apply to piezoelectric lattices as in the case of thermoelastic lattices that exhibit
thermal expansion. The reason is the bound analysis tacitly assumes the two phases are perfectly
attached together with no slip or void space and that they are in a minimum energy state [21]. The
no void assumption does not apply to lattice structures considered here. It is possible to envisage
three phase bounds; the void space would be considered as a third phase as incorporated [11] in
the interpretation of lattices of high thermal expansion.

Phase angles at low frequency well below resonance occur in mechanical, piezoelectric and
dielectric properties. The tangent of the phase angle between stress and strain, tan δ, is a measure
of mechanical damping. Piezoelectric materials exhibit viscoelastic response associated with the
material itself. Bimorph elements may exhibit additional damping associated with interfaces. In
piezoelectric materials, the electrical boundary conditions including effects of shape, influence the
mechanical damping [22]. Damping in the lattice is greater than that of a single rib. This is
attributed to damping elsewhere in the structure, including glue joints between ribs. Damping was
enhanced further by the addition of an electrical resistance.

Piezoelectric lattices may be used in applications such as actuators, energy harvesting, and
structures that change shape in response to stimuli. Piezoelectric lattices are, however, too com-
pliant to be used as ultrasonic resonators. Three-dimensional lattices may be envisaged based
on similar principles, for example an array of cells in the form of cubes or other polyhedra with
bimorph ribs, connected to each other at the rib midpoints.

5 Conclusion

Lattice structures based on bimorph rib elements made and measured in the laboratory exhibit
effective piezoelectric sensitivity deff33 = 9.4 µm / volt. This is much larger, by a factor of at least
10,000, in magnitude than that of material comprising the lattice ribs. Bending of the ribs in
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(a) (b)

Figure 4: Transient response to a mechanical impulse: (a) a single rib as a cantilever, (b) full lattice
in z direction, with no attached resistance and with 3 kΩ resistance.

(a) (b)

Figure 5: Square wave response in z direction, electrical excitation; (a) triangle cell with no attached
resistance; triangle cell with 30 kΩ resistance; (b) full lattice, with no attached resistance and with
3 kΩ resistance.

response to input voltage is responsible for the large sensitivity.
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