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The highest symmetry in which piezoelectricity was thought to occur is cubic. Here it is shown
that third rank piezoelectricity can occur in isotropic chiral solids. Polarization is coupled via an
isotropic third rank tensor to the antisymmetric part of the stress. Asymmetric stress can occur
if balanced by moments distributed over area or volume. Such moments occur in heterogeneous
solids in which there exists a characteristic length associated with the microstructure: the Cosserat
or micropolar solids. Effects associated with nonzero structure size are predicted, including radial
polarization in response to torsion. These effects do not occur in gradient type flexoelectric materials;
they are governed by a different tensorial rank and symmetry.
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Piezoelectric materials produce an electric polar-
ization when stressed mechanically, and they deform
in response to an electric field. They are widely
used in transducers, sensors and actuators. The
quest for enhanced properties has been the subject
of much research. Piezoelectric single crystals and
polycrystalline aggregates always have chiral asym-
metry. The strain εij depends on stress σkl via the
elastic compliance Jijkl, and on electric field Ek via
the piezoelectric modulus tensor [1] dkij . Strain also
varies with temperature change ∆T via the ther-
mal expansion αij . The electric displacement vector
Di depends on electric field via the dielectric per-
mittivity tensor kij . In pyroelectric materials Di
depends on temperature change ∆T via the pyro-
electric coefficient pi. Aside from the requirement
of chirality, the allowable symmetry conditions have
been thought to be immutable and not to provide
freedom for material development.

εij = Jijklσkl + dkijEk + αij∆T (1a)

Di = dijkσjk + kijEj + pi∆T (1b)

Triclinic asymmetry can result in a fully populated
piezoelectric sensitivity tensor, while a cubic mate-
rial has three shear coefficients such as d123, all of
equal magnitude [1]. There are currently no known
isotropic piezoelectric materials. In this Letter we
show that third rank piezoelectricity is in fact pos-
sible in isotropic chiral materials that have a char-
acteristic length scale.

The relation between chirality and third rank
properties such as piezoelectricity is generalized to
include isotropy. For the sensitivity dijk to have at
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least one nonzero component, there must be chiral
asymmetry. There are no known isotropic piezo-
electric materials and no obvious reason to seek
them; such effects are not expected in classically
elastic solids in view of the direction independence
of isotropic solids. For example, coupling of a uni-
form electric field vector to uniform shear strain is
not expected in isotropic materials because shear has
directional aspects. In the following, it is demon-
strated that third rank piezoelectricity can occur in
isotropic chiral materials; the directional aspect is
provided via rotation gradient.

There is one isotropic third rank tensor, the per-
mutation symbol eijk. This suggests the possibil-
ity of third rank piezoelectricity in isotropic solids.
However, eijk = −eikj so isotropic piezoelectric ef-
fects entail antisymmetric stress via Eq. 1b or anti-
symmetric displacement gradient. The stress is sym-
metric in classical elastic solids. Also, only the sym-
metric part of the displacement gradient, the strain,
enters the classical constitutive equation 1a.

These effects may be understood in the context
of Cosserat [2] elasticity, also called micropolar [3]
elasticity. Cosserat elasticity [4] is a continuum the-
ory that incorporates a rotation of points as well as
the translation assumed in classical elasticity. The
stress σjk (force per unit area) can be asymmetric.
The couple stress mjk (a torque per unit area) bal-
ances the moment from the asymmetric stress. The
antisymmetric part of the stress is related to rota-
tions as σantisymjk = κejkm(rm − φm) in which κ is
an elastic constant, φm is the rotation of points, and
rk = 1

2eklmum,l is rotation based on the antisymmet-
ric part of gradient of displacement ui. The consti-
tutive equations [3] for isotropic Cosserat elasticity
are as follows.
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σkl = λεrrδkl + 2Gεkl + κeklm(rm − φm) (2a)

mkl = αφr,rδkl + βφk,l + γφl,k (2b)

An isotropic non-chiral Cosserat solid is describ-
able by six independent elastic constants. The elas-
tic constants λ and G have the same meaning as in
classical elasticity with G the shear modulus; α, β, γ
represent sensitivity to gradients of local rotation in
different directions, allowing a nonlocal interaction.
κ quantifies the coupling between the rotation field
and deformation field. Characteristic lengths are de-
fined based on ratios of tensorial constants. The

characteristic length for torsion is `t =
√

β+γ
2G . The

characteristic length for bending is `b =
√

γ
4G . A

dimensionless coupling number N =
√

κ
2G+κ quan-

tifies the degree of coupling between rotation and
displacement fields; it is between zero and one. A
dimensionless polar ratio Ψ = β+γ

α+β+γ relates effects

of rotation gradients in different directions; it is be-
tween zero and 1.5. These elastic constants have
been determined in several cellular materials from
size effect experiments [5, 6]. In these foams, the
characteristic length is on the order of the cell size;
0.3-1 mm. Moreover, asymmetry of the stress in cel-
lular solids has been demonstrated via holographic
interferometry [7, 8]. Waves associated with rota-
tional freedom have been observed [9] in granular
materials.

Piezoelectricity in isotropic chiral solids at con-
stant temperature is envisaged with a direct effect
sensitivity disoijk = eijkd. So disoijkσ

antisym
jk contributes

to the electric displacement Di in Eq. 1b via the last
term in Eq. 2a, with k as the dielectric permittivity:

Di = dijkκejkm(rm − φm) + kδijEj . (3)

As for the converse isotropic piezoelectric effect
via displacement gradients, the strain εij is sym-
metric by definition. The antisymmetric part of the
displacement gradient rk = 1

2ekjiui,j is related to

rotation rij = 1
2 (ui,j − uj,i), so in a converse effect,

electric field is related to rotation difference rather
than strain. The rotation difference gives rise to an
asymmetric stress via Eq. 2a. The antisymmetric
converse effect for isotropic materials is expressed

κ

G
eijm(rm − φm) = disokijEk. (4)

The symmetric part is the usual elasticity relation

εij =
σij

2G −
νσnnδij
2G(1+ν) . Both asymmetric stress and

asymmetric displacement gradient are related to ob-
servable deformation fields in this class of materials.

FIG. 1. Left, diagram of torsion moment M causing
asymmetric stress σzθ − σθz as driver for electric dis-
placement D. Right, diagram of torsional deformation
in response to an applied radial electric field E .

This is in contrast to nonlocal integral approaches
[10] that are approximated as gradient effects.

All materials have at least one structural length
scale, that of the spacing of atoms; composites
and cellular solids also have much larger structural
length scales. Piezoelectric solids also have a char-
acteristic distance of charge separation, typically on
the order of the unit cell size. Piezoelectric solids,
when characterized in a quasi-static experiment, are
typically subjected to a uniform stress or a uniform
electric field. The response is also considered to be
uniform. The chirality that gives rise to piezoelec-
tric response is on the atomic or molecular scale, too
small to observably perturb the elastic field unless
the experiment probes the nano-scale.

As for predicted phenomena in chiral, direction-
ally isotropic solids with a length scale, asymmetric
stress associated with twist in an elastically isotropic
Cosserat solid is shown in Figure 1, left. A rod of
radius R and shear modulus G is subjected to a tor-
sional moment M . The asymmetric stress [11] is
balanced by a moment per area and is given by

σzθ − σθz = 2κC9I1(pr). (5)

This stress is coupled to electric displacement via
Eq. 3 in the piezoelectric isotropic solid. Here I1
is the modified Bessel function of order 1 and p2 =

2κ
α+β+γ . This can be expressed in terms of the char-

acteristic length `t, defined above, as p = 1
`t

√
κ
G

√
Ψ.

C9 = M
2πR2 [[ R

2

4`2t
+ 3

2 ](α + β + γ)pI0(pR) − [ R
2

4`2t
+

2]β+γ
R I1(pR)]]−1. It is expedient for the purpose of

visualization to consider a limiting case pR << 1.
For that case, which corresponds to N << 1 or weak

coupling, C9 ≈ M
GπR4 `t

√
G
κ

√
Ψ

1−Ψ/2 . So in this case,

the asymmetric stress, hence the electric displace-

ment, increases radially as κ M
GπR4

√
Ψ

1−Ψ/2r.

To observe the piezoelectric effect by this method,
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FIG. 2. Electric displacement D depends on radial dis-
tance r as a function of characteristic length `t at con-
stant coupling number N via Eq. 5.

FIG. 3. Electric displacement D (arbitrary units) de-
pends on radial distance r as a function of coupling num-
ber N at constant characteristic length `t via Eq. 5.

a rod of material is subjected to torsion, and polar-
ization is measured between electrodes at the rod
central axis and on the curved surface. This is a
direct effect. As is the case with the usual mea-
surements of piezoelectric polarization P, a charge
amplifier fixes the electric field to zero by feedback.
Electric displacement is then equivalent to polariza-
tion via D = ε0E + P. The microstructure size can-
not be negligible in comparison with experimental
length scales or `t → 0 and the effect vanishes. Ob-
servation of a radial signal suffices to demonstrate
the effect. To quantitatively determine the sensitiv-
ity d via Eq. 5 and 3, it is necessary to determine
the Cosserat elastic constants, e. g. by measuring
the size effect of rigidity in torsion. For foams stud-
ied previously, `t is 0.3 to 1 mm, on the order of the
cell size, and N is from 0.1 to 0.2.

The radial electric displacement in response to tor-
sion also depends on radial distance r and on char-
acteristic length `t based on the exact solution Eq.
5 as shown in Figure 2. Dependence on coupling
number N at constant `t is shown in Figure 3. The
magnitude of the effect tends to increase with `t and
with N . The r dependence is a function of elastic
constants associated with the microstructure; elec-
trodes within the material can be used to determine
this dependence.

A suggested experimental modality to detect
twisting deformation in response to a radial elec-

tric field is shown in Figure 1, right. In both direct
and converse methods, electrodes (which can be flex-
ible if needed for a foam material) are applied to the
curved surface and along the z axis. To demonstrate
effects in three orthogonal directions, a cubical spec-
imen could be used; this entails use of a more com-
plicated analytical solution or of approximations for
interpretation. Heterogeneous materials are unlikely
to be perfectly isotropic; nevertheless, detection of
radial effects will suffice to demonstrate the concept.

Isotropic chiral materials include gels made from
randomly oriented molecules of the protein collagen.
Not surprisingly, such gels do not exhibit piezoelec-
tricity when measured using the usual methods [12],
however piezoelectricity occurs if anisotropy is in-
duced via a strong DC electric field. Collagen is
piezoelectric in its oriented form. Chirality may oc-
cur in self assembled materials [13], but piezoelec-
tricity in them has not been explored. Piezoelectric-
ity in these chiral materials differs from the effects
predicted here in that uniform fields or stresses were
applied. Piezoelectric effects in chiral isotropic elas-
tic solids may have escaped notice thus far because
(i) the chiral characteristic lengths in typical piezo-
electric material are likely to be on the order of the
unit cell size (atomic scale), much smaller than di-
mensions of typical experimental samples; (ii) the
role of elastic chirality has not been appreciated and
the requisite experiments have not been done. Chi-
rality is known in two dimensional lattices [14] with
nodes that rotate under strain. Variants with nodes
that rotate in opposite directions [15] are not ex-
pected to exhibit elastic chirality.

These effects are distinct from gradient effects that
are known [10, 16–18] in piezoelectric materials:

Di = dijkl
∂σjk
∂xl

. (6)

Such effects involve a fourth rank coupling tensor in
contrast to a tensor of third rank considered above.
Recently, gradient effects have been explored fur-
ther and named flexo-electric; these are of interest
in the context of the potential for large effects [19].
Moreover, while gradients occur in bending, bend-
ing is not essential to produce a gradient in stress or
strain. For example, compression of a cone gives rise
to a gradient coupled via d3333; such cones have been
considered in the context of piezoelectric composites
[20]. Such gradient effects do not require chirality in
the material. Gradient effects can occur in materials
of various symmetry [21] including isotropic materi-
als. Observe that the fourth rank dijkl can be an
isotropic tensor, Aδij δkl + Bδik δjl + Cδil δjk. For
torsion in which σ23 varying along the 1 direction
gives rise to D1, there can be no effect due to gradi-
ent piezoelectricity in an isotropic material because
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d1231 = 0. By contrast an effect is predicted via
the coupling considered here. So the effects can be
readily distinguished. Too, flexo-electric effects are
ordinarily so weak that signals from them are not
detectable on a macroscopic scale.

If chirality occurs on a sufficiently large length
scale in comparison with experimental dimensions,
effects may be observable in elastic deformation.
For such solids, consider the chiral Cosserat con-
stitutive equations [22] as follows. σkl = λεrrδkl +
2Gεkl+κeklm(rm−φm)+C1φr,rδkl+C2φk,l+C3φl,k,
mkl = αφr,rδkl + βφk,l + γφl,k + C1εrrδkl + (C2 +
C3)εkl + (C3 − C2)eklm(rm − φm). The elastic con-
stants C1, C2 and C3 represent the effect of chi-
rality. There are nine elastic constants compared
with six for isotropic non-chiral Cosserat elasticity,
and two for classical elasticity. As with the non-
chiral case, characteristic lengths are defined based
on ratios of tensorial constants. In chiral Cosserat
elasticity [22] there is coupling between stretch and
twist. Such stretch-twist coupling has been analyzed
for cholesteric elastomers [23] and for helical nano -
structures pertinent to DNA [24]. Stretch-twist cou-
pling is a function of all nine elastic constants [22].

As for experiment, chiral gels or rubbers may be
considered for small scale experiments. Polymer
foams with cells 0.1 to 1 mm in size may be perma-
nently twisted to obtain chirality on a macroscopic
scale. The experimental size scale must not exceed
the material characteristic length by too large a fac-

tor. This is not onerous; it is done in study of flexo-
electric effects and in generalized continuum elastic-
ity, e.g. Cosserat, nonlocal. Such materials exhibit
non-affine deformation that appears as noise.

Effects associated with micro-structure are pre-
dicted, including radial polarization in response to
torsion. These effects are in contrast to prior
analyses in which piezoelectric composite materials
with particulate, fibrous, and platelet microstruc-
ture have been studied. These effects also differ
in kind from flexo-electric effects. Continuum mod-
els for them have been classical in nature, neglect-
ing size effects associated with the microstructure
[25, 26]. Such piezoelectric composites have advan-
tages over homogeneous materials [25, 27]. None
of these composite designs makes explicit use of
microstructure size in the analysis or design. By
contrast, the degrees of freedom considered in the
present analysis provide further latitude for design.

To conclude, piezoelectric effects are predicted in
isotropic chiral solids. The effects are interpreted in
the context of Cosserat elasticity in which there is a
non-negligible characteristic length scale associated
with the microstructure (in comparison with exper-
imental length scales). The effects differ in kind and
symmetry from those associated with gradient piezo-
electric / flexo - electricity.
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