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Abstract

The recent development of using negative stiffness inclusions to achieve extreme overall stiffness andmechanical damping of composite materials
reveals a new avenue for constructing high performance materials. One of the negative stiffness sources can be obtained from phase transforming
materials in the vicinity of their phase transition, as suggested by the Landau theory. To understand the underlying mechanism from a microscopic
viewpoint, we theoretically analyze a 2D, nested triangular lattice cell with pre-chosen elements containing negative stiffness to demonstrate
anomalies in overall stiffness and damping. Combining with current knowledge from continuum models, based on the composite theory, such as the
Voigt, Reuss, and Hashin–Shtrikman model, we further explore the stability of the system with Lyapunov's indirect stability theorem. The evolution
of the microstructure in terms of the discrete system is discussed. A potential application of the results presented here is to develop special thin films
with unusual in-plane mechanical properties.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For mechanical systems containing a negative stiffness
phase, anomalies in stiffness and damping have been observed
experimentally [1,2] and described theoretically [3–7]. These
references establish the connection between the anomalous
phenomena and composite theory, according to the Voigt, Reuss
and Hashin–Shtrikman model. Negative stiffness can result
from a phase change to lower density in one grain. Significant
interactions at the interface between a negative stiffness and
positive stiffness phase have been shown to be the cause of the
extreme overall stiffness and damping. The interactions can be
envisioned as different vibrational modes in the context of
dynamics, where the extreme stiffening effect due to the negative
stiffness phase resembles that an anti-resonance peak originates
from a specific mode that minimizes vibration amplitudes.
While the analogy between a vibrational system and the negative
stiffness composite system can be established, it should be
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E-mail address: yunche@lanl.gov (Y.-C. Wang).

0040-6090/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tsf.2006.01.031
emphasized that the anomalies due to negative stiffness can
occur in the quasi-static limit, i.e. with zero external driving
frequency. We remark that the negative Poisson's ratio material,
reported in [8,9], should be distinguished from the negative
stiffness material in that the former is stable for a Poisson's ratio,
ν, in the range −1bνb0, and the latter is unstable but can be
observed experimentally through displacement control. A
composite system, consisting of positive and negative stiffness
phases, can be stabilized by a surface constraint of the matrix
upon the inclusions, provided the matrix is stiff enough. If,
however, the negative stiffness inclusions violate strong el-
lipticity conditions [3], then they are expected to form bands as a
result of continuum instability.

Our stability analysis follows the Lyapunov indirect theorem
in the dynamical systems theory [10]. Contrary to conventional
stability theory based on energy arguments, the Lyapunov the-
orem investigates stability of a dynamical system. According to
the energy-based stability theory, for purely elastic systems in
the continuum limit, the Gibbs free energy may be the ap-
propriate potential to investigate the elastic instability under
homogeneous deformation when the system is under load
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Fig. 1. Configuration of the nested triangular cell composed of 12 two-force members, shown as solid lines. Each element of the inner triangle (Δ456) has stiffness k1,
and each element of the outer triangle (Δ123) has stiffness k3. The stiffness of linking element between inner and outer triangle is denoted k2. Solid circles represent
mass points:m1 for the outer andm2 for the inner. The length of an element of the inner triangle is 5 mm, and the radius of outer triangle is 5.6 times greater than that of
the inner. a ¼ 2sin−1 L2
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. β=(π−α) / 2. Loading conditions (P1, P2, P3) are so arranged that the lattice cell may experience hydrostatic pressure, simple shear or uni-

axial compression.
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Fig. 2. A schematic for a two-dimensional spring element in its local (ξ–η) and
global (x–y) coordinate system.
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control [11,12]. However, when some interior points of the
material are relatively less stable and remote from the external
boundary, the Helmholtz free energy becomes the appropriate
potential energy for probing local instability based on the Born
and Huang theory [13–15]. This theory can be viewed as an
extension of the Lyapunov indirect theorem in the theory of
linear elasticity with pre-stress. Furthermore, the Lyapunov
method can deal with non-conservative systems, such as a
viscoelastic one. Examination of the influence of negative bulk
modulus on effective stiffness of a mechanical system in elas-
ticity can be found in Reference [16], where several mechanical
systems are analyzed for their stability along the direction of
applied force.

Thin films are the manifestation of two-dimensional
materials. The purpose of this paper is to demonstrate and
analyze anomalous mechanical properties, structural evolution
and stability of a two dimensional discrete structure due to
negative stiffness effects under in-plane loading. This structure
can be realized as a cell or building block for a lattice. The
lattice will be stable if all the cells in it are stable. For thin
films, the lattice would represent a pattern of negative stiffness
and positive stiffness phases. The repeat unit in the pattern
would be represented by a cell. Special attention is placed on
the structural integrity and stability of the system when it
exhibits extreme mechanical properties, such as stiffness and
damping.

In our analysis, geometrical linearity is assumed; however,
the use of negative stiffness for an element implies the con-
sideration of geometric nonlinearity on that element [4]. That
is to say that the negative stiffness in the element is a result of
its deformed geometry, which is taken as the initial reference
position for the equilibrium analysis. The analysis from this
point forward assumes geometric linearity. Each element of
the system is assumed to be a standard linear solid with
selected elements containing negative stiffness. The limitations
of linear models reflecting limited reality are acknowledged.
However, through the linear analysis, we can obtain further
understandings of the system with a negative stiffness
inclusion, as the following: (1) structure evolution
corresponding to quasi-static processes, (2) damping with
respect to different deformation modes and (3) stability of the
extreme properties.

2. Analysis

A nested triangular lattice cell, as shown in Fig. 1, is of
interest to explore stable extreme mechanical properties. The
figure shows the node numbers, load and displacement boundary
conditions, and displacement coordinates at each node. The
elements adopted here are the two-force members, also known as
the truss element in structural mechanics, depicted as the solid
lines connecting the solid circles in the figure. Fig. 2 shows a
single element, used in our analysis, in its local and global
coordinates. In the triangular cell, there are 12 elements that
enclose 7 single domain triangles. In the following, we formulate
themechanical problem of the triangular lattice cell, based on the
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12 elements and 6 nodes, into amathematical formwith the spirit
of the finite element method. One can solve other lattice geo-
metry by simply redefining nodes, elements and connectivity
conditions between nodes and elements.

The inner (k1) and outer triangle (k3) are equilateral, i.e.
L1=L2=L3, and L10=L11=L12. Each of the links between the
inner and outer triangle has the spring constant k2. A
symmetry assumption is applied in the material properties of
the elements, in accordance with the symmetry of the
geometry. We assume that only k1 can have negative stiffness.
It is noted that to fully maintain the symmetry, the loading, P3,
P5 and P6 cannot be totally arbitrary. To test the bulk stiffness
of the model by analogously applying hydrostatic pressure on
the lattice cell, we assume P3=−γ cos(π / 6), P5=0 and P6=
−γ. As for a simple shear test, we set P3=−γ, P5=γ and
P6=0; a uniaxial compression simulation, P3=0, P5=0 and
P6=−γ. It can be verified that all the forces, applied loads and
reaction forces from the supports, point at the center of the
structure for the bulk mode. To calculate the mechanical
responses of the structure, the finite element method [17] is
adopted. For a purely elastic analysis, the elements are
structural trusses. The elemental stiffness matrix of a truss can
be written as follows, with the definition of θ shown in Fig. 2.

k ¼ k

cos2h coshsinh −cos2h −coshsinh
coshsinh sin2h −coshsinh −cos2h
−cos2h −coshsinh cos2h coshsinh

−coshsinh −sin2h coshsinh sin2h

2
664

3
775:

ð1Þ
Here k is the stiffness matrix with the dimension of 1 by 1

in the local (ξ–η) coordinate system, and k the stiffness matrix
in the global (x–y) coordinate system. Our method of
computation follows the spirit of the finite element method
[17], but the equations of motion are expressed in terms of the
system's state-space variables, which are displacements,
velocities and internal forces. The merit of using this
formulation is the ease of incorporating viscoelastic effects
and stability analysis. In the finite element method, suitable
displacement boundary conditions are necessary to ensure the
stiffness matrix of the system is non-singular. The imposed
displacement boundary conditions will not limit our explora-
tion about the effects of negative stiffness, but only introduce
a rigid-body shift. The equations of motion of the structure in
terms of nodal displacements are

M : Üþ F ¼ P; ð2Þ

F ¼ ΛT: f ; and ð3Þ

fj þ Tej f
�
j ¼ kjðDj þ TrjD

�
jÞ; j ¼ 1; 2; 3; :::; 12; ð4Þ

where M ¼ diag½m2 m2 m2 m1 m1 m1 m1 m1 m1�aR9�9 is
the mass matrix, U ¼ ½u3 u5 u6 u7 u8 u9 u10 u11 u12�TaR9�1

the displacement vector, F internal force vector, projected on
the global coordinate, and P the external force vector as
indicated in Fig. 1. The operator diag forms a diagonal matrix.
The internal force inside each spring element can be collected
to form the column vector, as follows.

f ¼ ½ f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12�TaR12�1: ð5Þ

Essentially, Eq. (4) stipulates that each of the elements in the
system behaves as a standard linear solid in the context of linear
viscoelasticity. To convert information in the local coordinates
(ξ−η) to the global (x–y) coordinates, we define the
contribution matrix, Λ, as follows.

Λ¼

0 0 0 −c1 −s1 0 0 c1 s1
0 0 0 0 0 c2 s2 −c2 −s2
0 0 0 −c3 −s3 c3 s3 0 0
0 0 0 0 0 0 0 c4 s4
0 c5 s5 0 0 0 0 −c5 −s5
0 c6 s6 0 0 −c6 −s6 0 0
c7 0 0 0 0 −c7 −s7 0 0
c8 0 0 −c8 −s8 0 0 0 0
0 0 0 −c9 −s9 0 0 0 0
0 c10 s10 0 0 0 0 0 0
c11 −c11 −s11 0 0 0 0 0 0
−c12 0 0 0 0 0 0 0 0

2
6666666666666666664

3
7777777777777777775

:

ð6Þ

Here cj and sj are the direction cosine and sine for the element
j. The dimension of Λ is R12�9. The state-space representation
of Eqs. (2)–(4) is as follows.

A : X� ¼ B : Xþ C ð7Þ

A ¼
I9 0 0
0 M 0
0 0 Te

2
4

3
5; ð8Þ

B ¼
0 I9 0
0 0 −KT

kele
: Λ kele

: Tr
: Λ −I12

2
4

3
5; ð9Þ

C ¼ ½0 PT 0�T ; ð10Þ

kele ¼ diag½k1 k1 k1 k2 k2 k2 k2 k2 k2 k3 k3 k3�; ð11Þ

Tr ¼ diag½Tr1 Tr1 Tr1 Tr2 Tr2 Tr2 Tr2 Tr2 Tr2 Tr3 Tr3 Tr3�;
ð12Þ

Te ¼ diag½Te1 Te1 Te1 Te2 Te2 Te2 Te2 Te2 Te2 Te3 Te3 Te3�;
ð13Þ

where V ¼ ½u•

3 u•

5 u•

6 u•

7 u•

8 u•

9 u•

10 u•

11 u•

12�TaR9�1 is the ve-
locity vector, and X ¼ ½U V f �TaR30�1 the state-space vector
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Fig. 3. Overall stiffness, measured at node 3 along y-direction, i.e. P6 /u6, and
change of structural shape (Af /A0−1) versus the tuning parameter k1. All
elements are elastic, and the quasi-static process is assumed. Extreme overall
stiffness is observed at k1=−0.4 kN/m, corresponding to minimal area change
on the outer triangle. The dip appears around k1=−0.27 kN/m on the curve of
normalized change of inner triangle area is due to the re-orientation of the inner
triangle, which can be observed in Fig. 4.
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of the system. The subscript of the symbol I indicates the
dimension of the identity matrix I. kele presents the stiffness
matrix in the local coordinate system. Tσ and Tε are matrices
containing the time constants for each element. We remark
that one can use the consistent mass matrix, calculated by
ΛT •M′ •Λ, where

M V¼ diag

½m2 m2 m2 m2 m2 m2 m1 m1 m1 m1 m1 m1�aR12�12;

ð14Þ

to obtain more accurate solutions. However, with the purpose
of observing the anomalies in stiffness and damping in the low
frequency regime, we use the lumped mass matrix and set
mj=10

−12 kg, where j=1, 2, denoting the mass points at the
corners of the inner and outer triangle, respectively, to diminish
inertia effects and increase natural resonant frequencies of the
structure so large that the difference between the use of the
diagonal or consistent mass matrix becomes indistinguishable.
The required computational time to invert a diagonal mass
matrix is minimal, compared to the consistent mass matrix.
Since the mass matrix does not come into play in static analysis,
the concern, if any, with the influence of the mass matrix comes
when one tries to analyze the stability and dynamical behavior
of the system.

To calculate the damping properties of the system in terms of
the loss tangent, we take a Fourier transformation on the gov-
erning equations, Eqs. (2)–(4), for obtaining the dynamic
stiffness of the system in the frequency domain, as follows.

K* ¼ −x2MþΛTd ðI12 þ ixTeÞ−1d
ðkeleΛþ ixkeleTrΛÞ:

ð15Þ

By the generalization of the definition of the loss tangent for
a 1-d.o.f. system, the effective loss tangent of the system can be
calculated as follows.

tandj ¼ ImðfjÞ=ReðfjÞ; j ¼ 1; 2; :::; 9: ð16Þ

where ζj is the eigenvalue of K* corresponding the degree of
freedom along Pj. In other words, there are 9 tan δ's associated
with the discrete system, corresponding to the 9 d.o.f. system. It
is noted that each of the loss tangent components corresponds to
the phase lag information of a specific load-deformation mode.
We remark that although the above formulation is based on the
triangular lattice element, as shown in Fig. 1, with 9 degrees of
freedom, following the same framework, it is straightforward to
solve the system with different geometry.

Following Lyapunov's indirect stability theorem, our stabil-
ity analysis requires the calculation of the eigenvalues of the
matrix A−1B from Eq. (7). The number of eigenvalues is equal
to 2* (2*n−3)+2*n, where n is the number of nodes. Spe-
cifically, for the triangular cell, n=6, and thus the total number of
eigenvalues is 30. This number may well exceed one's ex-
pectation from experience with Hamiltonian system since our
system is non-Hamiltonian, and the mathematical formulation is
based on the state-space representation.

In three-dimensional continuum theory, according to Born
and Huang [13], we remark that the internal stability of the
material body can be studied by analyzing the sign of the
eigenvalue λ in the following equation.

ðCpqrskqks−qk2dprÞuer ¼ bep: ð17Þ
Here for isotropic materials Cpqrs=λεrsδpqδrs+μ(εpq+εqp).

The symbol kj denotes the wave vector along the j direction in
three dimensions and ρ the density of the material; ũj and b

~̃
j are

displacement and body force, respectively, in the Fourier space.
The material body is internal unstable if the imaginary part of λ
is less than zero. The stability conditions of all crystal classes
have been summarized in Reference [18].
3. Results and discussion

For the triangular lattice cell, Fig. 3 shows the result of the
overall bulk stiffness and normalized change of area, (Af−A0) /
A0, versus the tuning parameter k1, under the quasi-static
assumption (ω=0 rad/s). Throughout the analysis, k2=5 and
k3=10 kN/m. Fixing these two parameters will not lose the
generality of our analysis since only the relative relationship of
k1, k2 and k3 is important in the search of the anomalies. As
expected, the measured change of area is strongly related to that
of overall stiffness. Here A0 is the original area of the outer or
inner triangle shown in Fig. 1, and Af is the area of the cor-
responding triangle after deformation. The bulk stiffness is
defined as P6 /u6, the ratio of the vertical load to vertical dis-
placement at node 3. It can be seen that the system shares the
same feature as the 1-D system, reported in [4], i.e. its overall



Fig. 4. Deformation under hydrostatic compression. (A) k1=0.2, (B) k1=0, (C) k1=−0.25, (D) k1=−0.29, (E) k1=−0.3, (F) k1=−0.32, (G) k1=−0.35 and (H) k1=
−0.4. The stiffness is in units of kN/m. The graphs are normalized to the outer boundary. The steps for the evolution of the inner triangle are first size reduction, then
reverse, expansion, reverse again, and finally decrease in size to a size-invariant state.
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bulk stiffness reaching a minimum first and then a maximum
while decreasing k1. We remark that due to the symmetry of
geometry, material properties and the loading condition, P6 /u6
represents the bulk property of the structure. The unsymmetrical
displacement boundary conditions cause the structure not to
deform in a completely symmetrical way. However, this effect is
negligible.

Comparing the normalized area change of the inner and
outer triangle with the stiffness of the system, one can see that
significant anomalies in structural shape occur in both the
inner and outer triangle when the stiffness of the system
reaches its minimum. More interestingly, the normalized
change of inner triangular area reaches a minimum at k1 ∼
−2.7 kN/m before its maximum at k1 ∼ −0.3 kN/m. This is
due to the re-orientation of the inner triangle. With sufficient
degrees of numerical resolution, the magnitude of the dip at k1
∼ −2.7 kN/m would be zero, indicating the deformed area is
the same as the undeformed one. Although the two areas are
identical, they exhibit different orientations, as shown in Fig. 4
(B) and (D). However, it can be seen that change of the
orientation of the inner triangle does not significantly
influence the overall stiffness. Moreover, the size of the
inner triangle shrinks to zero before changing its orientation.
For the configuration with extreme high stiffness (k1=−0.4
kN/m), there is not much change in the inner triangle in size,
but the change of the outer triangle reaches a minimum,
corresponding highest stiffness.

The evolution of the nested triangular structure is shown in
Fig. 4, as k1 decreases from positive to negative. Each figure is
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normalized to the outermost boundary. During the process of
decreasing k1, we observe that first from (A) to (C) the size of the
inner triangle decreases with k1, until a minimum (zero size), and
then a change of orientation follows, as shown in (D). When k1
continues decreasing, the size of the inner triangle increases
abruptly, approaching the size of the outer triangle, as shown in
(E). After that, another change of orientation follows, and then
the size of inner triangle decreases as k1 decreases, as shown in
(F) and (G). Finally, in (H), the size of the triangles are
insensitive to k1. Compared with the stiffness evolution of the
system with respect to k1 in Fig. 3, the configuration
corresponding to the highest stiffness is similar to Fig. 4 (H).
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measured by P6 /u6. Shear stiffness is measured by P5 /u5.
Physically, this evolution demonstrates the significant interac-
tion between the positive-stiffness and negative-stiffness phases.

As for the damping and stability calculations, viscoelastic
time constants of elements and driving frequency are important.
We choose τε1=10

−4, τε2=5×10
−4 and τε3=2×10

−4 seconds,
and τσj= rj τεj, where j=1, 2, 3, for the inner triangle, links and
outer triangle, respectively. And, we set the driving frequency
ω=10 rad/s throughout. The physical meaning of the dimen-
sionless parameter r relates to the strength of viscoelasticity [19].
More commonly, the loss tangent, tan δj, for the element j is
adopted to describe the linear viscoelastic properties of material.
For a standard linear solid, the relationship between rj and tan δj
is tan δj=ω(rj−1)τεj / (1+ rjω2τεj

2 ) for the element j. Fig. 5 shows
the relationship between tan δ and r for the standard linear solid
with ω=10 rad/s and τεj=10

−4 s. The inset of Fig. 5 dem-
onstrates the Debye peak of the standard linear solid in the
frequency domain with the assumptions of rj=10 and
τεj=10

−4 s. To simplify our analysis in the parameter space of
rj, we assume r1= r2= r3= r. Furthermore, since our interest is in
demonstrating the anomalies in the low frequency regime, we set
the driving frequency ω to be 10 rad/s throughout, and use the
dimensionless parameter r to measure the strength of viscoelas-
ticity in the elements of the system.

As r increases, the baseline tan δ for the system increases, as
shown in Fig. 6, while under hydrostatic loading. Although the
quasi-static effective stiffness of the system is independent of the
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parameter r, overall tan δ, calculated by Eq. (16), strongly
depends on r. It can be seen that for r=10, the system exhibits
high compliance and high damping simultaneously, and when r
is about 5000, high stiffness and high damping can be achieved
at the same time, albeit in the meta-stable domain. For high
damping and high stiffness applications, the parameter set, k1=
−0.4, k2=5, k3=10 kN/m and r=5000, appears to be feasible,
although its lifetime may be short. It is understood that the meta-
stability originates from the finite time constant (i.e. the inverse
of the eigenvalues) associated with divergence of deformation
responses [7]. Furthermore, in Fig. 6, we observe the structure
exhibits a system instability before the instability due to the bulk
mode. An asymmetric shear mode may be responsible for the
system instability.
Results of our tan δ analysis for the structure are shown in
Fig. 8; multiple peaks are observed. Comparing with effective
stiffness under different loading conditions, as shown in Fig. 7,
we identify that different damping peaks correspond to different
loading cases. The damping peak around k1=−0.3 kN/m is
accompanied by the stiffness anomaly, calculated under hydro-
static loading. Under simple shear, the system exhibits stiffness
and damping anomaly around k1=−1.5 kN/m. In the case of
uni-axial compression, we observe two anomalies in the
system's effective stiffness; one coincides with the bulk mode
response and the other the shear mode. A peak split is observed
with r=5000 for the shear mode. We note that although for the
case r=1.005, the damping anti-peak of the bulk mode appears
at about the same k1 as the damping peak of the shear mode,
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one can take advantage of either damping peak by exciting its
corresponding mode.

By increasing the stiffness of the linking springs (i.e. k2
springs), it is also observed (not shown) that in order to obtain
the extreme stiffness peak, it requires k1 to be more negative.
Therefore, it becomes experimentally unrealizable with larger k2
due to high degrees of instability. Physically, this result is
consistent with the prediction from continuum theory in that if k2
approaches infinity, the system becomes system with negative
stiffness elements under load control, and it is unstable.

We remark that only one of the 9 tan δ's from Eq. (16)
represents physical overall loss tangent of the system under a
certain deformation mode. And, it is possible to identify modes
without completely analyzing eigenvectors of the system since
the physically relevant tan δ can be singled out by recognizing
that the maximal compliance is in close relation to the maximal
damping during the negative-stiffness tuning process. Compar-
ison of different modes for the triangular lattice cell is shown in
Figs. 7 and 8 for the effective stiffness and tan δ. It can be
realized that each of the damping peaks corresponds to a specific
deformation mode. For example, the damping peak at k1=
−0.3 kN/m is associated with the bulk mode, and that at k1=
−1.5 kN/m corresponds to the shear mode. This result is
consistent with the 1-D system containing negative stiffness [5],
and one expects that extreme stiffness accompanies extreme
damping. Furthermore, we remark that since it requires more
negative k1 to obtain high stiffness in the shear mode, the
stability of the shear mode is weaker that that of the bulk mode.

Fig. 9 shows the results of our eigenvalue analysis with k1 as a
tuning parameter for m1 =m2=10

− 12 kg, The degree of
instability can be related to the magnitude of the stability losing
eigenvalues. Note that, in order to plot the x-axis on the log scale,
we use−k1 as the horizontal axis, and the eigenvalues are in units
of 1/s. Instability occurs when the real parts of eigenvalues
become positive. The loss of stability is determined by the
disappearance of the curves at their lower ends. Fig. 9 indicates
the structure of eigenvalue curves does not change significantly
with different strength of viscoelasticity. We remark that at the
zero mass limit, the degree of instability is lesser as the strength
of viscoelasticity in the elements increases, and stability of the
structure depends on the corresponding deformation modes.
However, slight perturbation will excite the stability losing
eigenvalues at k1=−0.9 kN/m, causing system instability.

Although at a certain transition the change of structure
geometry is enormous in order to maintain the force equilibrium
between the positive-stiffness and negative-stiffness elements, it
appears that, around the point that the system exhibits extreme
high stiffness, the structure geometry is regular. Our analysis
demonstrates firstly that a structure can be completely stable
even when negative stiffness elements are present, such as when
−0.9bk1b0 kN/m for the present case. Secondly, with negative
stiffness elements, the stable and meta-stable anomalies of the
system can be obtained.

Thin films with anomalous material properties may be
envisaged in light of the present research. Controlled phase
transformations of materials can give rise to negative stiffness
via the gradient of the energy curve in the Landau theory. We
claim that the heterogeneity required to achieve a balance
between positive and negative stiffness phases might be
obtainable using microlithography or nanolithography, as de-
scribed in [20]. Alternatively, one can manufacture a film con-
taining nano-grain inclusions of phase transforming material,
such as VO2, through sputtering deposition [21] or pulsed laser
deposition [22].

4. Conclusions

We conclude that the two-dimensional systems with negative
stiffness have essentially features as the one-dimensional sys-
tems. In other words, one can obtain stable extreme damping and
meta-stable extreme stiffness in two dimensions. However, slight
perturbations may excite other modes in the system, which make
the 2D system appear to have weaker stability. The reduction in
stability due to coupling between modes may depend on the
geometrical configuration of the system.
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