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Abstract

Use of negative stiffness inclusions allows one to exceed the classic bounds
upon overall mechanical properties of composite materials. We here analyse dis-
crete viscoelastic ‘spring’ systems with negative stiffness elements to demonstrate
the origin of extreme properties, and analyse the stability and dynamics of the
systems. Two different models are analysed: one requires geometrical nonlinear
analysis with pre-load as a negative stiffness source and the other is a linearized
model with a direct application of negative stiffness. Material linearity is assumed
for both models. The metastability is controlled by a viscous element. In the
stable regime, extreme high mechanical damping tan � can be obtained at low
frequency. In the metastable regime, singular resonance-like responses occur
in tan �. The pre-stressed viscoelastic system is stable at the equilibrium point
with maximal overall compliance and is metastable when tuned for maximal
overall stiffness. A reversal in the relationship between the magnitude of complex
modulus and frequency is also observed. The experimental observability of the
singularities in tan � is discussed in the context of designed composites and poly-
crystalline solids with metastable grain boundaries.

} 1. Introduction

Negative stiffness inclusions have been used to achieve extreme high stiffness and
high damping composites as demonstrated experimentally and analysed recently
(Lakes 2001a,b, Lakes et al. 2001, Wang and Lakes 2004a,b). Anomalies in material
modulus and damping, due to negative stiffness enhancement, are theoretically
reported for Reuss-type composites (Lakes 2001a), and isotropic two-phase compo-
sites (Lakes 2001b). Through the formulas for calculating effective modulus and
the elasticity-viscoelasticity correspondence principle for obtaining effective
viscoelastic properties of composites, Lakes and his colleagues have theoretically
shown the possibilities to exceed conventional bounds, which were articulated by
Paul (1960) and Hashin and Shtrikman (1963), in materials’ mechanical properties.
Experimental verifications have also been reported via a buckled rubber tube (Lakes
2001a), as an example of Reuss-type composites, and VO2-Sn composite system
(Lakes et al. 2001), as an example of Hashin-Shtrikman composites. In addition
to unusual mechanical properties, many anomalies in coupled field responses,
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such as thermal expansion coefficients, piezoelectric coefficients, pyroelectric coeffi-
cients, or electric permittivities, have also been theoretically discussed in Wang and
Lakes (2001). The causal mechanism for the phenomena is due to the interplay
between the contributions from negative stiffness and positive stiffness phases.

Negative stiffness is different from negative Poisson’s ratio in that stiffness and
Poisson’s ratio are two independent parameters for a homogeneous and isotropic
material. Negative stiffness entails a reversal relationship between load and displace-
ment for conventional, deformable materials. Poisson’s ratio, denoted as �, is defined
as the negative lateral strain of a stressed body divided by its longitudinal strain.
Based on the assumption of positive definiteness of strain energy, the range of
the Poisson’s ratio for isotropic solids is from �1 to 0.5, which implies stability.
Therefore, although negative Poisson’s ratio materials are uncommon, they are
stable, whereas negative stiffness bulk materials are unstable. Recently, negative
Poisson’s ratio foams with � as small as �0.8 (Lakes 1987, 1993a) have been fabri-
cated and analysed. We remark that most solid materials have a Poisson’s ratio
between 0.25 and 0.33. The stiffness of these foams is nevertheless positive. It is
understood that negative stiffness elastic systems, which are unstable, cannot exist
any longer than an infinitesimal time period before they change their geometrical
shape (on a microscopic or macroscopic scale) to a nearby stable equilibrium point.

The stability of systems with a negative stiffness element is intriguing. A bulk
solid of negative stiffness materials is unquestionably unstable, but if all of its
boundaries are fully constrained in displacement control, it can be stable, in which
stability requires shear modulus (G) and Poisson’s ratio (�) to be G>0 and
�1<�<0.5 or 1<�<1 (Bramble and Payne 1963). Since Young’s modulus
is E¼ 2G(1þ �) for isotropic homogeneous materials, the Young’s modulus can
legitimately be negative for constrained solids. Furthermore, if the condition of
strong ellipticity, G>0 and �<0.5 or �>1, is satisfied, isotropic and homogeneous
materials can have negative bulk and Young’s modulus without losing uniqueness in
their elasticity solutions (Knowles and Sternberg 1978) under no restrictions on
boundary condition. Also, it implies real waves can propagate in the media.
However, these criteria are only valid for homogeneous materials comprised of a
single constituent. Lakes and Drugan (2002) demonstrated that Reuss-type compo-
sites with negative stiffness inclusions are unstable, based on an energy argument in
the linear elasticity context. Instead of investigating the stability problem through
the viewpoint of continuum mechanics, Wang and Lakes (2003, 2004a) investigated
discrete, pre-stressed spring models, and showed that the system can exhibit extreme
effective stiffness with the aid of a pair of pre-stressed springs as a negative stiff-
ness element under a quasi-static assumption. They established a preliminary link
between stabilized negative stiffness and pre-load. Their stability analysis was
performed based on Lyapunov’s indirect stability theorem, and they showed that
systems of this sort are stable at the equilibrium point for extreme high overall
compliance, metastable for extreme high stiffness, as well as stable for extreme
high overall damping.

The objective of this paper is to analyse the stability and low-frequency dynamics
of viscoelastic ‘‘spring’’ systems with negative stiffness components. We first lay
down the mathematical foundation for solving the dynamical systems and related
stability theories. Then, we perform parametric analysis, and discuss the implications
of our numerical study in the context of experimental observation of high damping
or sharp peaks in the damping of polycrystalline media.
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} 2. Analysis

2.1. Viscoelastic geometric nonlinear analysis
In this section, we derive the governing equations for the viscoelastic system

shown in figure 1(a) with viscoelastic elements and pre-load, and its stability. The
pre-loads are denoted as F0

1 , F
0
2 and F0

3 . The symbol � (not shown in the diagram
due to �¼ 0) and � indicate the initial angle of the element bc and ac, respectively,
with respect to the vertical line cd, respectively. k1, k2 and k3 are spring constants,
and t"j and t�j are the time constants for a standard linear solid for the j-th element,
where j¼ 1, 2, 3. ma and mb are the masses at points a and b, respectively. The
generalized coordinates � and � will be used as primary variables to analyse the
problem. This model is adopted to demonstrate anomalies in effective properties for
systems with negative stiffness components. Viscoelastic properties and dynamic
responses of systems of this sort will be analysed by using a different model later.
The relation between pre-stress and negative stiffness has been reported elsewhere,
for example Wang and Lakes (2004a) and Iesan (1989). Figure 1(b) is a possible
generalization for a two-dimensional lattice structure. In the following, we first
present the constitutive model for characterizing a viscoelastic element, kinematic
relations between deformation and displacement, and then force balancing relations.

As for the constitutive relationship, the standard linear solid model (Zener 1948)
is adopted for all the ‘‘spring’’ elements, due to its mathematical simplicity and
frequency dependence to reflect somewhat realistic materials. The structure of each
element as a composite of elastic springs and a viscous dashpot is shown in the inset
diagram in figure 1(a). The viscoelastic properties are to be the control parameters in
the analysis of the stability of the model at equilibrium positions. The constitutive
equations for each of the viscoelastic ‘‘springs’’, indicated by subscripts or super-
scripts 1, 2 and 3, in the system can be written as follows:

F1 þ �1" _FF1 ¼ k1 �1 þ �1� _��1

� �
þ F0

1 , ð1Þ

F2 þ �2" _FF2 ¼ k2 �2 þ �2� _��2

� �
þ F0

2 , ð2Þ

F3 þ �3" _FF3 ¼ k3 �3 þ �3� _��3

� �
þ F0

3 , ð3Þ

where

�1¼
h

cosð� � �Þ
�

h

cos�
, ð4Þ

�2¼ ðh tan ð�� �Þ�h tan ð� � �ÞÞ � ðh tan ��h tan �Þ, ð5Þ

�3¼
h

cosð�� �Þ
�

h

cos�
: ð6Þ

Here, F ’s are the total internal forces in the springs. Equations (4)–(6) are the
kinematic relations between deformation (�) of springs and the generalized coordi-
nates, derived by inspection. In the standard linear solid model, the symbol k repre-
sents the relaxed spring constant. In equations (1)–(3), the static stiffness does not
change with the time constants. Also, assuming �"s and ��s to be zero leads to the
purely elastic material model. For a standard linear solid, passive viscoelastic sys-
tems require that �� is greater than �" to ensure damping tan � greater than 0. A
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Figure 1. (a) 2D viscoelastic ‘‘spring’’ system with negative stiffness components embedded
when compressional pre-load is assigned in the bc and bd element (number 1).
The spring constants are pre-chosen: k1¼ 10, k2¼ 3 and k3¼ 5 kN/m. pb is always
set to zero. (b) A proposed lattice structure assembled with the building block
shown in (a) with only the ab element being viscoelastic.
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typical solution of the ordinary differential equation of this kind in time domain is
found as follows:

Fj tð Þ ¼ eð�1=�i"Þt

ðt
0

1

� j
"

kj�j þ kj�
j
�
_��j þ F0

j

� �
eð�1=�i"Þtdtþ cj

� �
: ð7Þ

Here j¼ 1, 2, or 3, for labelling springs and cj is an integration constant, determined
by initial conditions of �j, i.e. cj ¼ ðkj�

j
�=�

j
" Þ�jjt¼0.

The Newtonian equations of motion are as follows:

ma €uua ¼ pa þ F2 þ 2F3 sin �� �ð Þ, ð8Þ

mb €uub ¼ 2F1 sin � � �ð Þ � F2, ð9Þ

where

ua ¼ h tan �� h tan ð�� �Þ, ð10Þ

ub ¼ h tan � � h tanð� � �Þ: ð11Þ

By substituting kinematic relations to equations (4) and (6), the equations of motion
can be expressed as follows in terms of the generalized coordinates.

A
€��

€��

� �
þ B

_��2

_��2

( )
¼

2F1 tð Þ sin � � �ð Þ � F2 tð Þ

pa þ F2 tð Þ þ 2F3 tð Þ sin �� �ð Þ

� �
, ð12Þ

where

A ¼
mbh sec

2 � � �ð Þ 0

0 mah sec
2 �� �ð Þ

� �
, ð13Þ

B ¼
�2mbh sec

2 � � �ð Þ tan � � �ð Þ 0

0 �2mah sec
2 �� �ð Þ tan �� �ð Þ

� �
: ð14Þ

Importing the solution, equation (7), into the equations of motion, equations (12)–
(14), will lead to an integro-differential type of governing equation. To avoid the
difficulty of solving this type of equation and facilitate the stability analysis, the
state-space technique (Meirovitch 1970) is used to reduce equations (12)–(14) to
first-order ODE’s. Incorporating the constitutive equations, the equations, which
govern the ‘‘spring’’ system, can be expressed as a first order ODE system with
the state-space variables �, �, w, v, F1, F2, and F3, in the form of

M _xx ¼ X xð Þ, ð15Þ

where

x ¼ _�� _�� _ww _vv _FF1
_FF2

_FF3

� �T
, ð16Þ

M ¼

1 0 0 0 0 0 0
1 0 0 0 0 0

mbh sec
2 � � �ð Þ 0 0 0 0

mah sec
2 �� �ð Þ 0 0 0

�1" 0 0
sym: �2" 0

�3"

2
666666664

3
777777775
, ð17Þ
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X ¼

w

v

2mbh sec
2 � � �ð Þ tan � � �ð Þw2

þ 2F1 sin � � �ð Þ � F2

2mah sec
2 �� �ð Þ tan �� �ð Þv2 þ 2F3 sin �� �ð Þ þ F2 þ pa

�F1 þ k1 �1 þ �1� _��1

� �
þ F0

1

�F2 þ k2 �2 þ �2� _��2

� �
þ F0

2

�F3 þ k3 �3 þ �3� _��3

� �
þ F0

3

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: ð18Þ

T denotes the transpose operator in matrix theory. The variables w and v are the
generalized velocities for �- and �-coordinates, respectively. So w ¼ _�� and v ¼ _��.
The equations of motion in the state-space representation, as above, are desirable
for stability analysis (Leipholz 1980, 1987, Strogatz 1994). It is noted that to facil-
itate the later numerical study of the equations, we define rj¼ ��j/�"j, for the j-th
spring element. The physical meaning of rj is directly related to the relaxation
strength, �, which is defined as the ratio of the difference between unrelaxed and
relaxed modulus to relaxed modulus (Zener 1948), as follows:

�j ¼ rj � 1, j ¼ 1, 2, 3: ð19Þ

The equations derived here are valid for all elements to be viscoelastic and pre-
stressed. However, to simplify later numerical analysis, and demonstrate the essential
features of the system, we limit ourselves to have r1¼ r3¼ 0, and F0

2 ¼F0
3 ¼ 0 so that

elements 1 and 3 are elastic and only element 2 is viscoelastic. Therefore, we define a
viscoelastic parameter for the k2 element as r¼ ��2/�"2, and consequently 	 ¼ k2�"2
ðrþ r=ðr� 1ÞÞ. Hence, F0

1 and r are the tuning parameters for negative stiffness and
degree of stability, respectively, and will be intensively used later.

The above equations involving viscoelastic effects can be reduced to equations
for purely elastic cases by letting all of the time constants be zero. After doing so and
re-arranging equations in equations (12) and (14) with equations (1)–(3) to eliminate
internal forces, Fs, one obtains the equations of motion for the elastic system (Wang
and Lakes 2004a) without damping effects as follows.

A
€��

€��

( )
þ B

_��2

_��2

( )
¼

2k1h sin �� �ð Þ

cos �� �ð Þ
�
2k1h sin �� �ð Þ

cos �
þ 2F0

1 sin �� �ð Þ

� k2 h tan �� �ð Þ � h tan �� �ð Þ � h tan�þ h tan �ð Þ þ F0
2

� �
pa þ k2 h tan �� �ð Þ � h tan �� �ð Þ � h tan�þ h tan �ð Þ þ F0

2

� �
þ
2k3h sin �� �ð Þ

cos �� �ð Þ
�
2k3h sin �� �ð Þ

cos�
þ 2F0

3 sin �� �ð Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð20Þ

where

A ¼
mbh sec

2 � � �ð Þ 0

0 mah sec
2 �� �ð Þ

" #
, ð21Þ

B ¼
�2mbh sec

2 � � �ð Þ tan � � �ð Þ 0

0 �2mah sec
2 �� �ð Þ tan �� �ð Þ

" #
: ð22Þ
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2.2. Linear analysis with negative stiffness
In the previous section, we established the mathematical foundation for studying

the negative stiffness effect by using pre-stressed spring elements with the considera-
tion of geometric nonlinear effects. The equivalence of using pre-stressed elements
with a unique geometry and allowing stiffness to be negative has been established in
Wang and Lakes (2004a). The system in figure 2 is constructed to contain elements of
both negative and positive stiffness, to have an equilibrium configuration at zero
applied load, and to contain a damping element to confer metastability. The system
chosen has no more complexity than is needed to achieve these characteristics.

Therefore, in this section, we derive governing equations to analyse the geome-
trically linear, viscoelastic spring model in figure 2 with the allowance of 
1 to be
negative to show complicated and interesting phenomena in the dynamics and
stability of this sort of system. The rationale for studying this model is to simplify
the mathematical complexity involved in the previous section, yet preserve the essen-
tial feature of a system with a negative stiffness inclusion. The governing equations
of the system are readily written as follows, with F1¼ 0 throughout the analysis to
simulate usual two-phase composite materials with no external forces applied at their
interfacial boundaries:

m1 0
0 m2

� �
€uu1
€uu2

	 

þ

k1 þ k2 �k2
�k2 k2

� �
u1
u2

	 

þ

f
0

	 

¼

0
F2

	 

, ð23Þ

f þ
	


1 þ 
2
_ff ¼


1
2

1 þ 
2

u1 þ

1	


1 þ 
2
_uu1: ð24Þ

Here f is the internal force in the standard linear solid module, composed of the
spring elements 
1 and 
2, and the dashpot element 	. The symbol 	 denotes visc-
osity, and k ’s and 
 ’s spring constants. The overall loss tangent is easier to compute
in the frequency domain with the aid of the Fourier transformation of equations (23)
and (24), as follows:

�!2m1 þ k1 þ k2 þ

1
2 þ i!
1	


1 þ 
2 þ i!	
�k2

�k2 �!2m2 þ k2

2
4

3
5 ~uu1

~uu2

	 

¼

0

~FF2

	 

: ð25Þ

Here the tilde denotes the Fourier-transformed variables. Assigning !¼ 0, one can
obtain the compliance of the system at the low frequency limit (i.e. quasi-static

m
1

u
1
, P

1
 

η
κ1

κ2

k
1

k2
m2

u2, P2 

Figure 2. Linearized spring-damper model for exploring the stability and frequency response
of extreme high damping due to negative 
1. k1¼ 10, k2¼ 5 and 
2¼ 5 kN/m are fixed
in analysis. Tuning parameters are 
1 and 	. P1¼ 0 throughout.
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processes). At a specific !, the effective dynamic compliance, jeff, and the overall loss
tangent of the system, tan �, are as follows:

jeff ¼ ~uu2= ~FF2

��� ���, ð26Þ

tan � ¼
Im ~FF2= ~uu2

� �
Re ~FF2= ~uu2

� � : ð27Þ

For the stability of the system in the sense of Routh-Hurwitz, the governing equa-
tions, equations (23) and (24), are rewritten in state space, as follows.

M

_uu1

_uu2

_vv1

_vv2
_ff

0
BBBBBB@

1
CCCCCCA

¼ K

u1

u2

v1

v2

f

0
BBBBBB@

1
CCCCCCA

þ

0

0

0

F2

0

0
BBBBBB@

1
CCCCCCA
, ð28Þ

where

M ¼

1 0 0 0 0
1 0 0 0

m1 0 0
sym: m2 0

	

2
66664

3
77775, and ð29Þ

K ¼

0 0 1 0 0

0 0 0 1 0

� k1 þ k2ð Þ k2 0 0 �1

k2 �k2 0 0 0


1
2 0 
1 0 � 
1 þ 
2ð Þ

2
666664

3
777775: ð30Þ

The stability of this system will be investigated by discussing the eigenvalues of a
J matrix, which is defined as J¼M�1K in this case.

2.3. Stability
For discrete autonomous dynamical systems, their governing equations can be

expressed as follows.

_xxi ¼ Xi x1,x2, . . . , xmð Þ, i ¼ 1,2, . . . ,m: ð31Þ

Here if the systems are Hamiltonian with H¼H(qk, pk), k¼ 1, 2, . . . , n, where n is
the total number of degrees of freedom, then m¼ 2n, and x and X can be constructed
as follows:

xk ¼ qk, xn þ k ¼ pk, and ð32Þ

Xk ¼ oH=opk, Xnþk ¼ �oH=oqnþk ð33Þ

where

_qqk ¼
oH

opk
, and _ppk ¼ �

oH

oqk
: ð34Þ
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qk and pk are generalized coordinates and generalized momenta, respectively.
Therefore, the physical meaning of the variables is clear. x is a column vector
containing the time-dependent generalized coordinates and momenta. X is a system-
specific vector function, which can be determined with the Hamiltonian of the system.
If the systems are non-Hamiltonian, such as dissipative systems, one still can con-
struct the governing equations into the form, as equation (31), through Newton’s
second law and the state-space technique, which in essence reduces higher order
differential equations to a system of first order differential equations. In this case,
the physical meaning of the variables will be somewhat obscure. Also, it is not
necessary for the dimension of equation (31), m, to be an even number. However,
the methodology for stability analysis is unchanged, as follows.

Following the Lyapunov’s theorem, or the so-called Routh-Hurwitz method
(Meirovitch 1970, Leipholz 1980, 1987), the stability analysis of equation (31) is
manifest at the eigenvalue analysis of the Jacobian matrix, defined as follows:

J ¼
oM�1

X

ox

�����
x¼xe

, ð35Þ

where x, X and M are defined in equations (16), (17) and (18), or (28), (29) and (30)
for the two models, respectively. Note, for Hamiltonian systems, M is an identity
matrix. The symbol xe denotes the value of the state variables at equilibrium, which
can be found by solving the algebraic equations, X(xe)¼ 0. According to Lyapunov’s
indirect theorem for stability, at an equilibrium point, if J contains eigenvalues with
no positive real parts, the system is stable infinitesimally around the equilibrium
point. Strogatz (1994) points out that the stability of a dynamical system with
zero real part in its eigenvalues is weak albeit stable. When all eigenvalues have
negative real parts, the degree of stability can be understood as the distance between
the imaginary axis and the closest eigenvalue in the complex plane for all the eigen-
values of the system (Leipholz 1987). Furthermore, the eigenvalue (�), which has
the smallest |Re(�)|, is responsible for the rate of decay (for Re(�)<0) or growth
(for Re(�)>0) of vibration amplitudes in the system’s normal modes. We remark
that the conventional energy method (Wang and Lakes 2004a) is not suitable for the
stability analysis of a dissipative system due to the changing in the energy landscape
with respect to time (since mechanical energy is not conserved in such systems).
Moreover Routh-Hurwitz criteria provide stability information by using only the
algebraic relations between coefficients of the characteristic equation of the J matrix.
Dorf (1992) uses an iteration scheme to discuss the stability of the system, which
essentially predicts the same result as Routh-Hurwitz criteria. In our study, we
exclusively analyse the eigenvalues with the aid of computation. Stability of the
systems in figures 1(a) and 2 will be discussed in detail, based on Lyapunov’s indirect
method.

} 3. Results and discussion

The elastic counterparts of the mechanical properties of figure 1 have been
reported in Wang and Lakes (2004a). We here investigate the similar system with
the consideration of viscoelastic effects. The spring constants are pre-chosen: k1¼ 10,
k2¼ 3, and k3¼ 5 kN/m. The quasi-static assumption (w¼ v¼ 0) is used throughout.
In figure 3(a), the effective absolute complex spring constant and the stability-losing
eigenvalue, one of the eigenvalues of J matrix, calculated from equations (16), (17)
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Figure 3. (a) Effective stiffness and the stability-losing eigenvalue vs. pre-stress (F0
1 ) in the

vertical springs in figure 1(a). The solid line was calculated from equation (20) for the
purely elastic case, and the open square for the viscoelastic case with the quasi-static
assumption, equation (15). The eigenvalues, calculated from equation (35) with equa-
tions (16)–(18), are negative for F0

1 greater than about �19N. The left scale shows
the real part of the stability-losing eigenvalue. The right scale shows the effective
stiffness or spring constant. Without pre-stress it is clearly stable, and has positive
stiffness (7.5 kN/m). The regime with eigenvalues having positive real parts is unstable.
The only damping element is in the k2 element with �"¼ 0.01 throughout all the cases.
(b) Root-locus plot of the system in figure 1(a) with F0

1 ¼�27.2, F0
2 ¼ 0, and F0

3 ¼ 0N.
The tuning parameter is 	, the viscous element parallel to the 
2 spring. The trajectory
of the eigenvalues indicates the system is metastable at the equilibrium point with
extremely high stiffness.
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and (18), are plotted versus the pre-load in F0
1 As it can be seen, tuning pre-load

changes the overall stiffness of the system dramatically. For the spring constant, the
continuous solid curve is obtained from the purely elastic assumption, and the open
square symbols represent the viscoelastic model, based on equation (15), for any r,
defined as a measure of the viscoelasticity in equation (19). The coincidence of the
two results is the consequence of the quasi-static assumption. It is noted, at
F0
1 ¼�27.2N, with the pre-chosen resolution of 0.1N increment on F0

1 in our calcu-
lations, the overall stiffness exhibits a thousand times increase, compared to the
system with positive F0

1 . The resonance-like feature is the signature of the systems
with negative stiffness elements, which has been observed previously (Lakes
2001a,b). Because of the quasi-static assumption (inertial terms are negligible) the
observed sharp peaks are not resonant phenomena.

The magnitude of the stability-losing eigenvalue decreases with the increase of
viscosity. This can be clearly seen on the root-locus plot, as shown in figure 3(b). The
inverse of the eigenvalue is the divergence rate associated with instability. Therefore,
the system is metastable at the equilibrium configuration with extreme high overall
stiffness. The rate of divergence from equilibrium becomes slower as the viscosity 	 is
increased. This is interpreted as follows. In spring-damper systems with positive
spring constant k and viscosity 	, the time constant for exponential decay of a
perturbation is �¼ 	/k. For an unstable system the effect of a perturbation grows
with time, but it grows more slowly if the viscosity is large. Near the stability
boundary, in the stable regime, the system exhibits extreme high overall compliance
around F0

1 ¼�19N.
As for computational details for solving the geometrical nonlinear problem, we

make the following remarks. For the purely elastic case, solving equation (20) with
no dynamic effects is straightforward, in which one prescribes � to obtain � through
the first equation of equation (20), pa from the second equation, and ua from equa-
tion (10). Then, one can obtain the load ( pa)–displacement (ua) plots. However, it is
not trivial to find equilibrium points for equation (15) since one needs to solve a
nonlinear algebraic system with the five variables (�, F1, F2, F3, and pa), when � is
prescribed. To ensure the convergence of the Newton-Raphson iteration method
for solving the nonlinear system, the conventional incremental-iteration solution
procedure (Bathe 1996) is adopted. During the calculation process, one incremen-
tally prescribes � to calculate the unknown variables iteratively with initial guesses
from the results of the calculation corresponding to the one-step previous �. Again,
it is understood that the effective spring constant calculated from the viscoelastic
model coincides with that from equation (20), since under the quasi-static assump-
tion the dashpot does not contribute any resistant force.

As for the nature of a system of this kind, we remark that the mechanical system
behaves in an extremely stiff (or compliant) manner when the inner springs contain
compressional forces. Moreover, it is stable for extreme compliance, and metastable
for extreme stiffness. If the vertical springs were isolated from the system, and con-
tained stored compressional forces, the two-spring structure would not be stable
since physically it is understood that any small perturbation will move the springs
away from the vertical position (Wang and Lakes 2004a). Hence, the inner springs in
figure 1(a) are named the negative stiffness element of the system. There are different
types of negative stiffness elements, such as a buckled tube (Lakes 2001a) or
materials undergoing phase transformation (Lakes et al. 2001). Nonetheless, these
negative stiffness elements involve buckling on a macroscopic or microscopic scale.
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Experimentally, embedding the negative stiffness elements into a matrix to form a
composite has shown significant anomalies on damping and stiffness properties of
materials (Lakes 2001a,b, Lakes et. al. 2001).

One can calculate overall damping of the above-mentioned system; however, the
complexity involved due to the geometrical nonlinear effect is not trivial. Here, to
simplify the analysis and illustrate the underlying physics, we analyse the linearized
model in figure 2 allowing 
1 to be negative for understanding its damping proper-
ties. The legitimacy of doing this is verified in Wang and Lakes (2004a). Wang
and Lakes (2003) have reported that the system exhibits stable extreme (possibly
singular) tan � with 	¼ 0.1 kNm�1 s. Here, we conduct a more detailed study of this
discrete system. In this model, the pre-chosen parameters are m1¼m2¼ 10�12 kg,
k1¼ 10, k2¼ 5, 
2¼ 5 kN/m and !¼ 1 rad/s. The results are shown in figure 4 with
	¼ 0.5 kNm�1 s. Note that the system is unstable when 
1<�3.34 kN/m due to the
eigenvalue with a positive real part. It is noteworthy that no singularities are
observed in tan � in this case. The mathematical analysis of the disappearance of
the singularity can be found in Wang and Lakes (2003). In addition, the zero tan � at

1¼ 0 is expected since the standard linear solid element is not physically connected
to the left fixed end; thus, the whole system is purely elastic.

Furthermore, higher damping in the standard linear solid element reduces
the magnitude of the anomaly in the absolute effective compliance of the system.
To understand the effect of viscosity on the stability boundary, in figure 5, we plot

Figure 4. Stable high damping in a discrete system with pre-load. Compliance and tan �
on a log scale (left axis), and real part of eigenvalues (open diamond, cross, open
square, open triangle, and open circle) on a linear scale (right axis) versus 
1 calculated
from the model in figure 2, with 	¼ 0.5 kNm�1 s. The fixed parameters are:
m1¼m2¼ 10�12 kg, k1¼ 10, k2¼ 5, 
2¼ 5 kN/m, and !¼ 1 rad/s.
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tan � and the stability-losing eigenvalue with various viscosities with respect to 
1. It
is found that changing viscosity will not move the stability boundary, but will alter
the asymptotic behaviour of the tan � versus negative stiffness. Also, the peak of tan �
approaches the stability boundary as 	 decreases. Again, the magnitude of the posi-
tive real part eigenvalue decreases with the increase of viscosity, which indicates the
metastability of the system.

The low frequency dynamic response of the system in figure 2 is presented in
figure 6. We plot the overall |tan �| in figure 6(a) and jk�eff j in figure 6(b) with respect
to sinusoidal driving frequency from 0.01 to 100 rad/s with 	¼ 0.1 kNm�1 s. The
stability boundary is found to be at 
1¼�3.3333 kN/m. It is found, from stability
analysis, regardless of driving frequency (far below any resonant frequency), that
when 
1<�3.3333 kN/m, the system is metastable. In this regime, sharp peaks in the
damping tan � can be observed. These peaks are not resonances since they occur at
frequencies far below any natural frequency. Specifically, the structural resonant
frequency of the system is typically about 106 rad/s. To perform the calculations,
non-zero mass must be assumed, but small node masses of 10�12 kg are used, so that
natural frequencies are far above the frequency range of interest.

In the stable regime, i.e. 
1>�3.3333 kN/m, one can see humps in the damping,
similar to the well-known Debye peaks. Also, as noticed, the corresponding curves
of the dynamic spring constant in figure 6(b) do not exhibit resonance-like features.
The stability-related eigenvalue, �, plotted where �<0 indicates stability and �>0
metastability. Other eigenvalues have been checked to have no positive real parts.

Figure 5. Tan � and eigenvalues on a linear scale for 	¼ 0.01, 	¼ 0.1 and 	¼ 0.3 kN m�1 s.
The fixed parameters are: m1¼m2¼ 10�12 kg, k1¼ 10, k2¼ 5, 
2¼ 5 kN/m, and
!¼ 1 rad/s.
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(a) 

(b) 

(a) 

Figure 6. Low-frequency response of the absolute value of (a) loss tangent and (b) absolute
value of the dynamic modulus of the system, shown in figure 2. The symbol, �,
represents the stability-losing eigenvalue in units of second�1. 	¼ 0.1 kNm�1 s for
all curves. For 
1>�3.3333 kN/m, the loss tangent is greater than zero, and for

1<�3.3333 kN/m, the left side of a sharp peak is negative, and the right side is
positive. At the stability boundary, 
1¼�3.3333 kN/m, the slope of the tan � curve
versus frequency is about �1. The sharp peaks indicate the singularities in tan �. The
humps in tan � are similar to Debye peaks. The reversal of frequency dependence of
the dynamic spring constant is observed when the negative stiffness is suitably tuned.
The eigenvalue analysis reveals the system is unstable when 
1<�3.3333 kN/m.
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The metastable system has a higher divergent rate (i.e. the inverse of �) when 
1 is
more negative. The rate of divergence (�) is correlated with elemental characteristic
time constants as follows (Wang and Lakes 2003). �¼�(1/�cþ 1/��), where �c¼ 	/
kc, 1/kc¼ 1/k1þ 1/
1, and ��¼ 	/
2. In this parametric study, since 	 and 
2 are pre-
chosen, respectively, to be 0.1 kNm�1 s and 5 kN/m, ��¼ 0.02 s throughout.
Therefore, the rate of divergence is determined mainly by the interplay between k1
and 
1. Moreover, the asymptotic slope (on a log–log scale) of the tan � curve at
high frequency (greater than 100 rad/s and less than the structural resonant
frequency) is about �1 for all studied cases. The rationale is the high frequency
response of a standard linear solid is not dominated by the negative stiffness
element. Based on this model, when 
1 is tuned to be more negative gradually
from �3.3334 to �3.36 kN/m, the resonance-like peak shifts to relatively higher
frequency regimes, but if 
1 is too negative (less than �3.36 kN/m), the peak
moves back toward low frequency regimes, and eventually, becomes a hump again
(for example, 
1¼�4 kN/m). Moreover, around 1 rad/s, the peak with 
1¼�3.34
coincides with the peak with 
1¼�3.744 kN/m. But, the latter has a 100 times
greater divergent rate.

In figure 6(b), the magnitude of the effective dynamic spring constant (jk�eff j) is
plotted versus frequency (0.01 to 100 rad/s). As can been seen, far away from the
stability boundary (for example, 
1¼�3.091 kN/m) in the stable regime, the fre-
quency dependence of jk�eff j is small. From that, the frequency dependence becomes
stronger up to 
1¼�3.3333 kN/m. When approaching the stability boundary, jk�eff j
becomes 2� 3 orders of magnitude larger in the frequency range of 10 to 100 rad/s
than in that of 0.01 to 0.1 rad/s.

When 
1 is so negative that the system becomes metastable, for example

1¼�3.34 kN/m, the frequency dependence of jk�eff j is reduced. For even more
negative 
1 (
1¼�3.74 kN/m), one observes an anomalous dispersion in which
jk�eff j need not increase with frequency. In this regime the system is unstable. Very
strong negativity in 
1 (
1¼�4 kN/m) reduces the reversed frequency dependence of
jk�eff j. It is noted that, from figure 5, with positive 
1 at 1 rad/s, the magnitude of the
effective dynamic spring constant is about 3 kN/m.

As for extremely high tan �, we remark (figure 6a) that for 
1>�3.3333 kN/m,
one can obtain a stable tan � of 1 to 100 (approaching 1000 when very close
to the stability boundary) at low frequency. This is higher than that of commercial
high damping rubbers (tan �� 1). However, at low frequency, the system has
a low stiffness near the stability boundary. Physically the peaks in attenuation
arise from the fact that point m1 moves much more than the driven point m2. The
proper balance between positive and negative stiffness causes an amplification of
motion.

As for resonance-like singular peaks in tan �, the phenomenon is in principle
observable near the stability boundary. Specifically, for the peak close to the stability
boundary in the metastable regime, e.g. 
1¼�3.3334 kN/m, the time constant for
divergence is 667 seconds, and the required time period for experimental observation
of five cycles at the peak’s frequency 0.07Hz is only about 70 seconds. The obser-
vability, therefore, may be achieved by tuning parameters such that the driving
frequency is much greater than the stability-losing eigenvalue. Singular peaks
in tan � are not observable if the system contains such high negative stiffness that
the time constant for divergence and the period of driving force are comparable. For
instance, the tan � peak for 
1¼�3.744 kN/m has the time constant for divergence
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about 0.1 seconds, but it takes about 6.28 seconds to complete a cycle of the applied
sinusoidal driving force. Under these conditions, it is not observable.

As for possible experimental observations, we recall that large peaks in tan � of
systems with a negative stiffness constituent were reported by (Lakes 2001a, Lakes
et al. 2001) as a function of pre-strain or temperature. Frequency tuning was not
done in these studies, and the distinction between stable and metastable behaviour
was not explored. These results reveal the role of negative stiffness in systems more
complex than the one in the present analysis. The present model system generates
negative stiffness based on geometrical nonlinearity. While it does not contain expli-
cit temperature dependence, one may draw correspondences with crystals which
undergo phase transformation. For such crystals, a snap-through effect similar to
that described here occurs as temperature changes, by virtue of the effect of tem-
perature on interatomic bonds. For the present model to represent such crystals, the
negative stiffness becomes a function of temperature as well as strain. For materials
with a single mechanism for viscoelastic response, there is an Arrhenius relationship
between temperature and frequency. In that context, the frequency dependence
analysed here can be interpreted in the context of temperature dependence. As for
observed damping in alloys, broadband damping tan � observed in indium-tin alloy
by Lakes and Quackenbush (1996) followed a power law ��n over many decades of
frequency �. Since n¼ 0.28<1, the observations cannot be explained by a simple
model.

The implication of the resonance-like peaks is provocative. For example,
atomistic models of grain boundaries (Alber et al. 1992, Bassani et al. 1992) disclose
metastable or unstable phases which lose positive definiteness or strong ellipticity,
hence have negative moduli. In this context, physical ageing in crystalline materials
may provide a flux of ‘new’ material converted to metastable form. While experi-
ments intentionally designed to reveal effects due to these metastable boundaries
have not yet been reported, it is possible such effects have been observed. For
example, Fitzgerald (1957, 1966) reported resonance-like dispersion below any
known natural frequency in several polycrystalline metals. These peaks were elimi-
nated by annealing. Similar dispersion effects were reported by Pugh et al. (1973) in
human bone which has hierarchical structure (Lakes 1993b). Since the quantum
mechanical mechanism suggested was not generally accepted, we consider metastable
phases as an alternative mechanism worthy of further study.

} 4. Conclusions

The damping, tan �, of discrete viscoelastic systems can be greatly magnified by
incorporation of a negative stiffness element. The high damping occurs as a broad
low-frequency peak in stable systems, and as a sharp singular peak in metastable or
unstable systems. The singularity resembles a resonance but occurs in the quasi-static
regime far below any natural frequency. The system can exhibit stiffness greater than
that of any constituent in the metastable regime.
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