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Abstract Recent experiments in rat medial collateral ligament revealed that the rate of stress
relaxation is strain dependent and the rate of creep is stress dependent. This nonlinear behavior
requires a more general description than the separable quasilinear viscoelasticity theory
commonly used in tissue biomechanics. The purpose of this study was to determine whether
the nonlinear theory of Schapery or the modified superposition method could adequately
model the strain-dependent stress-relaxation behavior of ligaments. It is shown herein that
both theories describe available nonlinear experimental ligament data well and hence can
account for both elastic and viscous nonlinearities. However, modified superposition allows for
a more direct interpretation of the relationship between model parameters and physical
behavior, such as elastic and viscous nonlinearities, than does Schapery’s theory. Hence, the
modified superposition model is suggested to describe ligament data demonstrating both
elastic nonlinearity and strain-dependent relaxation rate behavior. The behavior of the mod-
ified superposition model under a sinusoidal strain history is also examined. The model pre-
dicts that both elastic and viscous behaviors are dependent on strain amplitude and frequency.

1
Introduction
Ligaments display time-dependent and history-dependent mechanical behavior characteristic
of viscoelastic materials. Viscoelastic behavior has been observed and studied in cells (Bausch
et al. 1999; Guilak 2000; Guilak et al. 1999, 2000; Heidemann et al. 1999; Trickey et al. 2000)
and a number of biologic tissues such as articular cartilage (Mak 1986; Woo et al. 1980), bone
(Lakes and Katz 1979; Lakes et al. 1979), skeletal muscle (Best et al. 1994), cardiovascular tissue
(Rousseau et al. 1983; Sauren et al. 1983), tendon (Atkinson et al. 1999; Graf et al. 1994), and
ligament (Haut and Little 1969; Provenzano et al. 2001; Thornton et al. 1997; Woo 1982, Woo
et al. 1981). Structural, phenomenological, and continuum models have been formulated to
describe these viscoelastic behaviors (Bingham and DeHoff 1979; Corr et al. 2001; Decraemer
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et al. 1980; Dehoff 1978; Egan 1987; Fung 1972; Johnson et al. 1996; Lakes and Vanderby 1999;
Lanir 1979, 1980, 1983; Sanjeevi et al. 1982; Shoemaker et al. 1986; Viidik 1968). The most
commonly applied model of viscoelastic behavior in biomechanics has been the quasilinear
viscoelasticity (QLV) model of Fung (1972). This model has been particularly useful in de-
scribing experimental behavior in soft tissues (Best et al. 1994; Carew et al. 1999, 2000; Fung
1972; Sauren and Rousseau 1983; Sauren et al. 1983; Thornton et al. 1997; Woo 1982; Woo et al.
1980, 1981) and has been shown to describe ligament relaxation behavior at a single fixed strain
level very well (Woo 1982; Woo et al. 1981).

A recent study (Provenzano et al. 2001) in rat medial collateral ligament revealed that within
the strain-stiffening ‘‘toe’’ region and early portions of the linear region of the stress–strain
curve, stress relaxation, and creep behavior are nonlinear functions of strain and stress, re-
spectively. The rate of stress relaxation decreases with increasing strain and the rate of creep
decreases with increasing stress. Similar strain-dependent relaxation rate behavior has been
reported in the fibrocartilage zone of rabbit tendon tested in compression (Haridas et al. 2001).
The behavior in these data sets cannot be robustly described using QLV, since in the separable
formulation the time-dependent behavior is independent of stress or strain. Hence, the same
rate of relaxation or creep would be predicted regardless of strain or stress level (Provenzano
et al. 2001). Although each curve in the data set could be individually fit with separate moduli
and a range obtained (as was demonstrated by Haridas et al. 2001), with QLV a single modulus
cannot describe the stress- or strain-dependent rate behavior. A more general formulation is
therefore required for these data.

Thornton et al. (1997) reported that stress relaxation proceeds more rapidly than creep and
demonstrated that neither a linear nor a QLV theory was able to phenomenologically model
both behaviors with interrelated constitutive coefficients. Such behaviors can be described,
however, using the single integral form of nonlinear superposition with interrelated coefficients
for relaxation and creep as shown by Lakes and Vanderby (1999), or by incorporating collagen
fiber recruitment when predicting creep from stress relaxation as shown by Thornton et al.
(2001). These studies examined the relaxation–creep interrelation at only one level of coupled
strain–stress, therefore it is not yet known if these models can account for the strain- or stress-
dependent behavior described above, or if a more general formulation is required.

Many reasonably general constitutive models such those by Schapery (1969), Lai and Findley
(1968), Christensen (1980), Pipkin and Rogers (1968) and the modified superposition (also
commonly referred to as nonlinear superposition) method (Findley et al. 1976; Lai and Findley
1968; Lakes 1998) have been proposed to describe nonlinearly viscoelastic materials. The
Schapery single integral approach has been shown to be accurate and adaptable (Dillard et al.
1987; Lou and Schapery 1971; Touti and Cederbaum 1997) and modified superposition is
general and also allows the relaxation function to depend on strain. These models have not been
used to describe ligaments, but some have been used for polymers, and their formulations show
potential for ligament mechanics. Therefore, the objective of this study is to determine whether
the theory of Schapery (1969) or the modified superposition method (Findley et al. 1976) can
adequately model the stress- and strain-dependent creep and relaxation behavior of ligaments.

2
Analysis
Because this study investigates the application of existing viscoelastic models to existing ex-
perimental ligament data, all models are one-dimensional (1-D) and employ small (infinites-
imal) strains and engineering stress. These theories are generalizable to 3-D but this is not
currently necessary or desirable since we are dealing with a simple tension, 1-D experiment. As
such, it is not meaningful to distinguish isotropy from anisotropy or compressible from in-
compressible. Regarding the chosen stress and strain formulations, the maximum strain in the
ligament data is about 0.05; hence, the error associated with using small strain can be neglected.

Linear and quasilinear viscoelastic theory
Linear viscoelastic behavior is commonly described using the Boltzmann superposition
integral:

rðtÞ ¼
Z t

0

Eðt � sÞ deðsÞ
ds

ds ; ð1Þ
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in which r(t) is the stress, E(t) is the time-dependent relaxation function, e(t) is the strain, and
s is the variable of integration. A complementary relation can be obtained for creep behavior.
This formulation does not allow the relaxation or compliance function to depend on strain or
stress, nor does it allow for elastic nonlinearity. Therefore, a more general formulation is
required for nonlinear materials such as ligament.

QLV (Fung 1972) accounts for elastic nonlinearity of the stress–strain behavior:

rðe; tÞ ¼
Z t

0

Etðt � sÞ dr
de

deðsÞ
ds

ds ð2Þ

whereby, the relaxation function is separable into a function of time and a function of strain,
i.e., E(t,e) = Et(t)g(e). The function g(e) accounts for strain-dependent elastic nonlinearity (dr/
de in Eq. 2). With QLV, the time-dependent portion of behavior Et(t) is independent of strain.
Considering the strain history to be controlled by a Heaviside step function (i.e., e(t) = e0H(t)),
the derivative of strain in Eq. (2) will become a delta function and Eq. (2) becomes
r(e0,t) = e0E(t)g(e0). Thus, stress is strain dependent but the time-dependent portion of the
modulus, and thus, time-dependent stress behavior, is independent of strain level. Elastic
nonlinearity and time dependence can be discriminated graphically. When examining stress-
relaxation data, the strain-dependent elastic nonlinearity is revealed by plotting isochronal
stress versus strain, while the time dependence is related to the shape and strain dependence of
the relaxation curves. This graphical representation can be studied on a log–log plot of stress
versus time where non-strain-dependent curves will have the same shape, or if the modulus is
in the form of a power law, the same slope (Provenzano et al. 2001). A similar formulation can
be obtained for creep behavior. Although QLV accounts for elastic nonlinearity, the time
dependence is independent of strain. The QLV theory would therefore predict the same
relaxation rate regardless of applied strain level. Hence, a more general formulation is required
to account for the strain-dependent relaxation rate behavior seen in ligament.

The QLV model has been used for many years; limitations in this model have not been
apparent in part because many experiments were designed under the assumption of QLV. Such
experiments in principle cannot robustly test the QLV model. A common experimental mo-
dality is to conduct a single test at constant strain rate to determine the nonlinearity, and a
single creep or relaxation test to determine the time dependence. Such an experiment cannot
distinguish between a separable kernel and a nonseparable kernel within the framework of
single integral models.

2
Schapery’s single integral nonlinear theory
Schapery’s nonlinear viscoelastic theory can be derived using principles of irreversible
thermodynamics (Lou and Schapery 1971; Schapery 1966, 1969). When strain is treated as the
independent state variable and the case of uniaxial loading is considered, Schapery’s theory
reduces to a single integral expression:

rðe; tÞ ¼ heðeÞEee þ h1ðeÞ
Z t

0

DEðqðtÞ � q0ðsÞÞ dh2ðeÞe
ds

ds ð3Þ

with the reduced time, q, defined as,

q ¼
Z t

0

dt0

ae½eðt0Þ�
ð4Þ

and reduced time variable of integration q¢,

q0 ¼
Zs

0

dt0

ae½eðt0Þ�
ð5Þ
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In Eq. (3), Ee is the equilibrium, or final, value of the elastic modulus, and DE is the transient
modulus. Since ‘‘final’’ refers to behavior at infinite time, which is not available to a mortal
observer, the quantity Ee for practical purposes is the modulus value of the last data point in the
experimental time frame. Ideally, the final data point would occur after some ‘‘steady-state’’
behavior has been approached. The terms he, h1, h2, and ae are strain-dependent material
properties (ae is a function of strain and time and may also be temperature dependent) that
have thermodynamic significance; variations in the first three terms are due to third- and
higher-order strain effects in the Helmholtz free energy and changes in ae are related to strain
and temperature influence on entropy and free energy (Schapery 1966, 1969). Schapery (1969)
presented a complementary relation for creep in which nonlinear stress-dependent terms are
related to Gibb’s free energy.

The embedded function ae in the reduced time expressions (Eqs. 4 and 5) is used to shift the
viscoelastic time scale. The variable ae relates to the effect of temperature. In particular, for some
materials, notably polymers, a change in temperature gives rise to an acceleration or retardation
of time-dependent processes. This is referred to time–temperature superposition. Materials that
behave in this way are referred to as thermorheologically simple. Composites, whether they are
synthetic or biological (such as bone), tend not to obey time–temperature superposition (Lakes
1998). Temperature dependence is not considered in this article for ligament.

When he = h1 = h2 = ae = 1, Eq. 3 reduces to the Boltzmann superposition principle
(Eq. 1). However, when implementing the above theory to nonlinear behavior, one or more of
the strain-dependent functions (he, h1, h2, ae), but not all, can be assumed to equal unity
(Dillard et al. 1987; Lou and Schapery 1971; Schapery 1969; Touti and Cederbaum 1997). In
polymers and fibrous composite materials in isothermal settings it is common to set h1 and ae
to unity (Dillard et al. 1987; Lou and Schapery 1971; Schapery 1969; Touti and Cederbaum
1997); this case will be applied in this study.

In previous applications of Schapery’s theory with constant strain (after initial ramp time),
the transient modulus has been modeled using a power law formulation (Dillard et al. 1987;
Lou and Schapery 1971; Schapery 1969), which has been shown to describe ligament visco-
elastic behavior well (Lakes and Vanderby 1999; Provenzano et al. 2001). Therefore, in the
constant strain application of Schapery’s theory the form of the transient modulus will be
modeled as a power law:

DEðqÞ ¼ Cqn ; ð6Þ

where C and n are assumed to be material constants at any strain level, for a constant tem-
perature (Dillard et al. 1987). When Eq. (6) is substituted into Eq. (3) the stress is:

rðe; tÞ ¼ heðeÞEee þ h1ðeÞC
Z t

0

ðq � q0Þn dh2ðeÞe
ds

ds : ð7Þ

Substituting a Heaviside function into Eq. (7) for a particular strain, e0, and setting
h1 = ae = 1, as discussed above, results in:

rðe0; tÞ ¼ heEee0 þ h2Ce0tn : ð8Þ

Noting that Eee and Cetn of Eq. (8) take the role of final and transient stresses, respectively,
that Ee and e are known from experimental data, and that C and n are constants determined by
curve fitting, it can be seen that Eq. (8) predicts the strain-dependent elastic and rate behavior
with two parameters that are functions of strain, he and h2.

Modied superposition method
The single integral formulation of the modified superposition method (Findley et al. 1976;
Lakes 1998) allows the relaxation function to depend on strain level:

rðe; tÞ ¼
Z t

0

Eðt � s; eðsÞÞ deðsÞ
ds

ds : ð9Þ

A similar stress-dependent compliance formulation exists for creep. The form of the
relaxation function will be chosen as a nonseparable strain-dependent power law:
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Eðe; tÞ ¼ AðeÞtBðeÞ : ð10Þ

The function A(e) represents the initial modulus (E0), which can be obtained from
a stress–strain curve or isochronal curve describing the nonlinear elastic behavior. The
function B(e) describes the strain-dependent rate of stress relaxation and can take the form
B(e)=g(e)n0, where n0 is some initial relaxation rate and g(e) accounts for strain-dependent
nonlinearity in relaxation rate. Substituting a Heaviside function, as described above, into
Eq. (9) results in:

rðe; tÞ ¼ E0etgðeÞn0 ¼ r0tgðeÞn0 ð11Þ

where E0 and r0 represent isochronal values of the tangent modulus and stress, respectively,
and can be functions of strain to account for nonlinearities in the elastic response. In addition,
Eq. (11) can take on a more predictive form once relaxation or creep rates over a range of
strain or stress values are obtained, i.e., the dependence of the rate B as a function of strain or
stress is known. Stress–strain or isochronal curves can be used to obtain the initial modulus or
stress terms, A(e), and a polynomial can be fit to the rate range to obtain the function B(e);
future mechanical behavior within the strain range can then be predicted. Hence, the
nonseparable form of modified superposition is able to represent both the elastic and
strain-dependent rate nonlinearities that are experimentally observed.

In addition to the Heaviside function, a more complex strain-history function will be
examined. A sinusoidal strain history of the form:

eðtÞ ¼ e0

2
1 � cosðaptÞ½ � ð12Þ

was chosen, where e0 is the strain amplitude and a is related to the frequency (a is twice the
frequency; Fig. 1). The resulting form of Eq. (9) is:

rðe; tÞ ¼ pae0

2

Z t

0

AðeÞðt � sÞBðeÞ sinðapsÞds : ð13Þ

Experimental data
Each of the preceding nonlinear models will be applied to previously published experimental
stress-relaxation data from rat medial collateral ligament (Provenzano et al. 2001). The ex-
perimental methods for these data are described in detail elsewhere, and therefore will only be

Fig. 1. Behavior of the sinusoidal strain history function applied within the framework of modified
superposition. The strain amplitude, e0, has been chosen as unity in this example
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discussed briefly. A total of six ligaments from separate animals composed the experimental
stress-relaxation group. Multiple uniaxial stress-relaxation tests were performed on each lig-
ament. Each tissue was tested at constant strain (ramp time = 0.32 s) for 100 s at levels of
strain below the damage threshold of 	5% for this method of testing (Provenzano et al. 2002),
allowed to recover for at least 10 times the length of the test while remaining hydrated, then
tested again at a different strain level. The test order was randomized, and the area of the tissue
was calculated by optical measurement of the tissue width and thickness, and assuming an
elliptical cross-section. Strain was measured on the ligament. Acquired force, strain, and time
were synchronized. Engineering stress and strain were then calculated and stress plotted versus
time. The first data point was plotted at 10 times the ramp time in order to reduce transient
effects due to tissue loading. Therefore, the initial stress amplitudes represent isochronal data.
A power law, tn, was fit to the experimental data using KaleidaGraph (Synergy Software, Inc.,
Reading, Penn., USA) graphical software. Results showed the rate of relaxation to be dependent
upon the level of strain. Both Schapery’s theory and the modified superposition method will be
applied to model typical data displaying this nonlinear behavior. Model parameters were
determined by programming each of the models into KaleidaGraph and applying them to
the experimental data described above.

To the authors’ knowledge no tests exist revealing strain-dependent relaxation behavior
during cyclic testing. Hence, the stress resulting from a sinusoidal strain history in Eq. (13)
demonstrates model behavior only. Eq. (13) was programmed into MATLAB (The MathWorks,
Inc., Natick, Mass., USA) and solved for strain-amplitude values less than 5%. These strain
values were chosen because, as discussed above, this region is known to display nonlinear
strain-dependent relaxation rate behavior under constant strain.

3
Results

Application of Schapery’s theory to ligament data
The nonlinear theory of Schapery (1969) (Eqs. 3–8) was applied to experimental
stress-relaxation data from rat MCLs (Fig. 2). The data demonstrate that the rate of stress
relaxation is significantly dependent upon strain, with decreasing relaxation rate with
increasing tissue strain. Schapery’s nonlinear theory was able to fit the data well at all strain
levels: e = 0.82%, R2 = 0.83; e = 1.74%, R2 = 0.96; e = 2.38%, R2 = 0.99; e = 3.74%,
R2 = 0.98. Hence, Schapery’s theory accounts for the elastic nonlinearity and strain-de-
pendent relaxation rate nonlinearity observed in ligament. The initial isochronal stress
amplitudes provided by Schapery’s theory are 1.26, 5.48, 9.91, and 14.88 MPa for 0.82, 1.74,
2.38, and 3.74% strains, respectively, and as such reveal the elastic nonlinearity in ligament.
Decreases in the strain-dependent h2(e) term with increasing strain can be related to de-
creasing relaxation rate with increasing strain. The constants C and n, determined by fitting
the first (e = 0.82%) curve with he and h2 equal to unity, are 118.85 and –0.5, respectively.
The strain-dependent terms for the remaining three stress-relaxation curves at 1.74, 2.38,

Fig. 2. Application of Schapery’s
nonlinear viscoelasticity theory
(curves) to experimental stress-relax-
ation results of Provenzano et al.
(2001) (points) for multiple testing at
various strain levels of a single rat
ligament. R2 = 0.83, 0.96, 0.99, and
0.98 for e = 0.82%, 1.74%, 2.38%, and
3.74%, respectively
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and 3.74% strain are respectively, he = 0.946, 0.977, and 0.990; h2 = 1.028, 0.678, and 0.331.
Hence, h2(e) decreased by approximately 68% from 1.74 to 3.74% strain indicating a
reduction in relaxation rate with increasing strain. In addition to stress levels and rate
information, a range of moduli information can be obtained from Schapery’s theory by
employing an alternate form of Eq. (3):

rðe; tÞ ¼ h0ðeÞE0e � h3ðeÞ
Z t

0

ERðqðtÞ � q0ðsÞÞ dh4ðeÞe
ds

ds ð14Þ

where E0 is the initial time-independent elastic modulus, ER is the relaxation modulus, and the
functions h0, h3, and h4 are the strain-dependent terms. Examining Eqs. (3) and (14) it is seen
that the moduli are related as follows (Findley et al. 1976):

E0 ¼ ER þ DE þ Ee ð15Þ

Applying this relation to the data in Fig. 2, the elastic moduli at 10 s are found to be 138, 299,
400, and 401 MPa for 0.82, 1.74, 2.38, and 3.74% strain, respectively. These data (elastic
modulus at a time point within the data set) can be obtained by calculating the
relaxation modulus and subtracting it from the initial elastic modulus, or by calculating
the transient modulus and adding it to the final elastic modulus. Finally, examination of the
model data demonstrates that although the transient modulus is in the form of a power-law, the
final plot is not linear on a log–log scale due to the additive nature of Schapery’s formulation.
The exponent in the power law is a constant and the nonlinearity is accounted for by two
nonlinear terms, he and h2, each multiplied by a set of constants and added as seen in Eq. (8).
Hence, nonlinearity in the rate of relaxation with strain is not determined by changes in the
exponent of the power law but by two additive terms where the magnitude of h2 affects the
weight of the power law term and thus strongly influences the predicted rate of relaxation.

Application of the modied superposition method to ligament data
Modified superposition theory (Eqs. 9–11) was applied to experimental stress-relaxation data
from rat MCLs (Fig. 3). As stated above, these data demonstrate that the rate of stress relaxation
decreases significantly (more than an order of magnitude) with increasing tissue strain. Mod-
ified superposition theory fits the data well for all strain levels: e = 0.82%, R2 = 0.91; e = 1.74%,
R2 = 0.91; e = 2.38%, R2 = 0.96; e = 3.74%, R2 = 0.95. Application of the model resulted in r0

values of 1.45, 5.72, 10.10, and 15.25 MPa for 0.82, 1.74, 2.38, and 3.74% strain, respectively,
revealing elastic nonlinearity. The rate term, B(e), can be seen to decrease in magnitude as strain
increases (–0.14, –0.054, –0.026, and –0.012 for 0.82, 1.74, 2.38, and 3.74% strain, respectively)
indicating nonlinearity in the rate of relaxation with strain. This nonlinearity can easily be
visualized as straight-line segments on a log–log plot (Fig. 3). Having obtained the above values,
the isochronal stress amplitudes at the first isochronal data points can be calculated as 1.23,
5.36, 9.80, and 14.80 MPa for 0.82, 1.74, 2.38, and 3.74% strain, respectively.

Fig. 3. Application of single integral
modified (nonlinear) Superposition
theory (lines) to experimental stress-
relaxation results of Provenzano et al.
(2001) (points) for multiple testing at
various strain levels of a single rat
ligament. R2 = 0.91, 0.91, 0.96, and
0.95 for e = 0.82%, 1.74%, 2.38%, and
3.74%, respectively
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A polynomial describing the rate function, B(e) = –0.1902 + 0.1364e – 0.03403e2 +
0.002765e3; R2 = 0.92, was obtained by fitting rate versus strain data from Provenzano et al.
(2001) (Fig. 4). Three separate stress-relaxation tests were then fitted using the predicted form
of Eq. (11) (Fig. 5). Using the predicted rate formulation, the curves were fit with R2 values of
0.84, 0.78, and 0.99 for strains of 0.85, 2.20, and 2.47%, respectively. Fitting each curve indi-
vidually with the modified superposition formulation resulted in R2 values of 0.97, 0.99, and
0.99 for strains of 0.85, 2.20, and 2.47%, respectively. Hence, as expected, scatter in the ex-
perimental data limits the predicted rate formulation. However, the prediction formulation fit
the curves reasonably well and shows promise as a predictive measure of stress relaxation.

Behavior of the modied superposition method under sinusoidal strain history
The strain-dependent function A(e) and B(e) in Eq. (13) were obtained from experimental rat
MCL data. The function A(e) was determined by fitting the tangential modulus as a function of
strain from typical stress–strain data for the rat MCL: A(e) = 3636.7e0.7173, R2 > 0.97. The
function B(e) was chosen to be the same as described in the previous section (Fig. 4):
B(e) = –0.1902 + 0.1364e – 0.03403e2 + 0.002765e3; R2 = 0.92. Figure 6a displays model
behavior over 25 cycles at peak strain (e0) levels of 0.5 and 1.5%, for a frequency factor (a) equal
to one. The peak stresses at a constant frequency factor display strain-dependent behavior,
although to a lesser extent than seen with constant strain (Fig. 6b). The magnitude of stress
varies with frequency (Fig. 7). When examining model behavior over one order of magnitude of
frequency (a = 0.1 to 1.0), initial stress increases from 1.27 to 1.95 MPa. In addition, valley
stresses increase with increasing frequency. Relaxation rate, determined by fitting peak stresses
with a power law, increases with increasing frequency: –0.07 at a = 0.1 to –0.13 at a = 1.0.
Hence, the model predicts that the relaxation rate is both strain and frequency dependent.

Fig. 4. Fitting of a polynomial func-
tion (curve) to experimental stress-
relaxation rate of Provenzano et al.
(2001) (points) for multiple rat liga-
ments tested at multiple strain levels.
Rate was defined as n in a tn time
dependence. The strain-dependent
rate behavior in this study can be
described by a polynomial function
for B(e) as: B(e) = –0.1902 + 0.1364
e – 0.03403e2 + 0.002765e3; R2 = 0.92

Fig. 5. Comparison of experimental
data (points) and predicted (lines)
stress-relaxation behavior. Predic-
tions are based on curve fitting of a
prior set of stress-relaxation data
(Fig. 3) at different strain levels.
R2 = 0.84, 0.78, and 0.99 for strains of
0.85, 2.20, and 2.47%, respectively

52



4
Discussion
This study investigated the ability of two nonlinear viscoelastic models to describe
experimentally observed ligament behavior. Models in which the time-dependent behavior
is independent of stress or strain cannot adequately describe the reported nonlinear behavior of
ligament. The two nonlinear theories examined in this study described both elastic and viscous
nonlinear behavior well.

The utility of phenomenological models, such as the ones employed in this study, lies in the
fact that experimental results can be obtained only over a discrete region of the independent
variables, in this case time and strain. Models provide parameters that can be used to compare
experimental data sets and allow one to predict the behavior in intermediate regions not
covered by the experiments. For such an approach to succeed, the dependence must satisfy
conditions of smoothness. Although sharp peaks and other abrupt behavior are known in
resonating systems, they do not occur in systems that relax. Therefore the approach is
warranted. Phenomenological models can also be used in finite element analyses to predict

Fig. 6. a Sinusoidal stress behavior at strain amplitude of 0.5 and 1.5% over 25 cycles for a = 1. b Peak
stresses for 0.5, 1.0, 1.5, 2.5, and 5.0% peak strains with a = 1. The rate of relaxation of the peak stresses
shows strain-dependent behavior: e0 = 0.5%, rate = –0.1014; e0 = 1.0%, rate = –0.1012; e0 = 1.5%,
rate = –0.1010; e0 = 2.5%, rate = –0.1006; e0 = 5.0%, rate = –0.0996

53



stress and strain distributions in tissues having complex geometries or subjected to complex
loads.

Both Schapery’s theory and modified superposition are able to successfully model the data
examined thus far. This is perhaps not surprising since these formulations have some simi-
larities at constant temperature, though the Schapery form offers more flexibility in the number
of variable characteristic functions. However, in this application of Schapery’s theory not all the
available freedom of the model was needed. For instance, Schapery’s theory can have upward of
six unknown functions and constants (he, h1, h2, ae, and terms of the transient modulus)
allowing the model to be adaptable. In this application the Schapery model was reduced to two
unknown functions of strain (he and h2) and two unknown constants C and n, thus not all the
flexibility of the theory was required. From Schapery’s theory, information regarding the initial,
final, and relaxation modulus can be easily obtained, as can an indication of the degree of
nonlinearity by examining the h terms. In this application, the decrease in h2 with increasing
strain indicates a decrease in the rate of relaxation with increasing strain. Modified superpo-
sition allows the initial (isochronal) modulus or stress to be easily obtained as well as an
indication of the degree of rate dependence on strain through the exponent of the power law.

Fig. 7. Sinusoidal stress behavior at a = 0.1, 0.5, and 1.0 for e0 = 1.5%. Peak and valley stress-display
frequency dependent behavior with larger initial stresses associated with faster loading. Relaxation rate,
determined by fitting peak stresses with a power law, increased with increasing frequency: a = 0.1,
rate = –0.0695; a = 0.5, rate = –0.1005; a = 1.0, rate = –0.1325

Fig. 8. Example of physical ligament
behavior. Medial collateral ligament
does not substantially resist
compressive loading. Therefore, as
the tissue is brought back to zero
strain, the tissue stress will appear to
plateau (black lines). Equation (13)
predicts compressive stress in the
tissue (gray lines). This will only be
physically accurate if tissues were
capable of resisting compressive
loading
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Since the modulus formulation used with modified superposition in this study allows the rate
dependent nonlinearity to be accounted for with one term, the degree of nonlinearity can be
easily determined and future predictive formulations (such as shown above) are more easily
obtained. For this reason, modified superposition allows for a more direct interpretation of the
relationship between model parameters and physical behavior than does Schapery’s theory.

A sinusoidal strain history was applied within the framework of the modified superposition
formulation. The model predicted that the rate of stress relaxation is both strain and frequency
dependent. Peak and valley stresses increased with strain and frequency. Woo et al. (1990)
examined the effect of strain rate on material properties of rabbit MCLs. Despite differences
between their experiments and simulations in this study, the qualitative differences in initial
peak stresses over one order of magnitude (	0.15–1.5%/s) appear consistent. In regard to
compressive stresses, it is clear that ligament does not resist the compressive loads predicted by
the model. A more realistic plot of a ligament’s response to a haversine tensile stretch is shown
in Fig. 8, in which stress does not go below zero, but instead plateaus until tensile loading
resumes. With this load history, the rate of relaxation (of peak stresses) was dependent upon
strain (e0), but not to the degree seen experimentally under constant strain. The recovery
period inherent in sinusoidal loading is a likely cause for the reduction in strain-dependent
behavior and the rate of recovery is likely to also be strain dependent. In addition, the re-
laxation rate nonlinearities seen in step loadings are attenuated by their superposition in the
Boltzmann integral with this sinusoidal load history. However, further experimental studies
need to be performed before the theoretical behavior presented can be confirmed and discussed
in detail.

The mechanisms driving viscoelastic behavior in ligament are not yet completely defined.
It has been speculated that ‘‘the decrease in relaxation rate with increasing strain could be the
result of larger strains causing greater water loss (wringing out effect) which causes the tissue to
be more elastic (less viscous) than tissues subjected to lower strains’’ (Provenzano et al. 2001).
Studies supporting this hypothesis have reported increased relaxation with increased hydration
(Chimich et al. 1992) and a decrease in tissue water content with cyclic loading (Hannafin and
Arnoczky 1994). Thornton et al. (1997) speculated that creep behavior is due to the progressive
recruitment of collagen fibers during creep (Thornton et al. 2001) and that this microstructural
behavior is unlikely to have as substantial an effect on stress relaxation as on creep. It has been
hypothesized that this behavior could also explain the decrease in the rate of creep with
increasing load (Provenzano et al. 2001). As larger forces are applied to the ligament, more
fibers are recruited, leaving fewer fibers to be progressively recruited after initial loading, which
would therefore decrease the creep response. If these mechanisms are correct, then the dif-
ferences in the rate behavior with stress or strain would have thermodynamic and/or structural
significance. For instance, a change in stress-relaxation rate behavior caused by changes in
hydration, or changes in creep behavior caused by changes in the degree of progressive fiber
recruitment, may be considered in the context of irreversible thermodynamics or using
structural models, such as the model by Hurschler et al. (1997), which incorporates collagen
fiber recruitment. Yet, further understanding of the physical mechanisms driving nonlinear
viscoelastic behavior in ligament are required before the physical significance of strain-
dependent rate terms, such as B(e), can be interpreted.

Several limitations must be borne in mind when considering the models examined in this
study. The data examined do not identify all possible nonlinearities in ligament, such as the
effects of age, healing, biochemical changes, temperature, hydration, and others. In addition,
only single integral formulations are examined. Single integral formulations are more man-
ageable than multiple integral formulations such as that of Green and Rivlin (1957). Using a
1-D single integral formulation, only a subset of viscoelastic phenomena can be described,
while multiple integral or tensorial formulations are more robust and allow for more complex
behavior such as multi-axial states of stress (Findley et al. 1976). Second, the experimental rat
MCL data (Provenzano et al. 2001) examined in this study are limited and to the authors
knowledge only one other study (Haridas et al. 2001) identifies strain-dependent rate behavior
in tendon. A larger range of strains for stress relaxation or stresses for creep and longer times
(over many decades) needs to be examined to identify relevant nonlinearities. In addition,
extremes of loading rate have not been examined. Experimental studies under sinusoidal strain
need to be performed in order to support the behavior indicated by modified superposition
under a sinusoidal strain history. Finally, studies still have not explored all aspects of ligament
viscoelastic behavior during various human activities, which may include complex creep and
relaxation components.
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QLV has been, and remains, a valuable tool in the field of biomechanics. However, the
QLV formulation cannot describe all viscoelastic behavior and for such data more general
formulations are required. Two such formulations were considered in this study, Schapery’s
theory (1969) and modified superposition (Findley et al. 1976), both of which describe the
reported (Provenzano et al. 2001) nonlinear viscoelastic behavior well. However, modified
superposition allows for easier interpretation of elastic and rate nonlinearity when using a
power law formulation since the rate is revealed in the exponent of the power law, B(e), and
the amplitude term, A(e), reveals elastic nonlinearity. Further work remains with respect to
interrelating stress-relaxation and creep data with strain- or stress-dependent time behavior,
respectively.
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