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Abstract

Creep and relaxation are two viscoelastic phenomena that are easily interrelated for a linearly viscoelastic material, but
interrelationships are complex for nonlinearly viscoelastic materials. We use a single-integral nonlinear superposition principle to relate
creep and relaxation, where the kernel is assumed to be a nonseparable product of strain and time. Herein, we develop time dependence
as general power laws with up to four terms for creep compliance and relaxation modulus. Higher-order formulations give better results
for ligament in terms of curve fitting and prediction of relaxation from creep. This is illustrated by a comparison between a two- and a
three-term formulation on the experimental data of rabbit medial collateral ligaments. Also, an interrelation between several aspects of
creep and relaxation is presented for arbitrarily high order, and the nature of high-order interrelation is discussed. The generality of the
method makes it suitable to phenomenologically model many complex materials, to predict complex behaviors and to therefore reduce

the amount of testing for robust material characterization.
© 2006 Published by Elsevier Ltd.
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1. Introduction

Biological materials are complex microstructurally
and complex in their mechanical behaviors. To describe
them with a single robust model is a formidable challenge.
An example of these complexities can be seen in the medial
collateral ligament (MCL), often studied experimentally.
It is present on the medial side of the knee and extends
from the proximal tibia to the distal femur. Like other
ligaments in the body, it is made up of collagen fibers,
elastin and proteoglycans, glycolipids, water and cells.
Collagen fibers dominate the microstructure and these
fibers have a distinctive crimp pattern [1], which means
that they have a wavy appearance. More and more fibrils
are recruited with increasing tension to resist the tensile
stress. Increased stretch straightens the initially crimped
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fibers so that they carry an increasing amount of load. This
gives rise to a strain stiffening nonlinearity [2]. The
nonlinearity indirectly provides a mechanism for relaxation
to proceed faster than creep, as discussed by Lakes and
Vanderby [3].

A number of microstructural [4-9], phenomenological
[1,3,10,11] and continuum models [12-14] have been
developed to describe ligament and tendon viscoelastic
behavior. Few attempts have been made to critically test
constitutive models. For example, Thornton et al. [9] found
that creep and relaxation could not be adequately
interrelated using a quasi-linear approach. Most of the
interrelations in the nonlinear viscoelasticity literature are
not based on superposition. They are discussed in detail in
Oza et al. [11] and are briefly mentioned in this paper.
Ashby and Jones [15] and Popov [16] analyze secondary
creep but ignore primary creep, which is of interest here.
Moreover, they assume the same relation between stress
and strain rate in both creep and relaxation. Arutyunyan
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Nomenclature

t time

T time variable of integration

a(f) time-dependent stress

o constant stress

&(1) time-dependent strain

€ constant strain

E(t,¢(t)) relaxation modulus dependent on time and
strain

J(t,0(t)) creep compliance dependent on time and
stress

H(t)  heaviside step function

Ja coefficients in creep compliance kernel

fua coefficients in relaxation modulus kernel

n,m, p, r, k, i, j powers of time in the creep compliance

kernel

n, x, ¢, s, h powers of time in the relaxation modulus
kernel

a power of stress and strain in creep compliance
and relaxation modulus, respectively

u any integer starting from 0, e.g. 0, 1, 2, 3...

d any integer starting from 1, e.g. 1, 2, 3...

J any integer starting from —1, e.g. —1, 0, 1, 2,
3.

gamma function

summation notation

symbol for limit used in the summation
notation, which represents any integer starting
from 1

e M~

[17] and Touati and Cederbaum [18] use a complex method
to predict stress relaxation from creep; however, they do
not directly use superposition methods. Fung’s [10] quasi-
linear viscoelasticity (QLV) assumes a separable kernel as a
product of a function of time and a function of strain. QLV
has been applied to many other soft tissues such as muscle,
cartilage and brain tissue. It does not admit interrelations
in which both creep and relaxation are represented in QLV
form since a separable form for creep becomes a
nonseparable form for relaxation as shown by Lakes and
Vanderby [3]. QLV also fails to model properly the low
load region where creep rate depends strongly on stress
level [19]. Most earlier experiments involved only a single
creep or relaxation test combined with a tensile stress strain
curve to failure. This modality is insufficient to distinguish
QLYV from nonseparable nonlinear superposition. Multiple
integral formulations developed by Lai and Findley [20] are
not only more complicated but also more versatile than
single integral forms.

Rheologic testing of complex biological materials (such
as ligament) is inherently time-intensive. It would be
desirable to perform creep tests, and then able to predict
stress relaxation through a constitutive model so that the
number of experiments required to study viscoelastic
behavior can be halved. An interrelationship between
creep and relaxation is then required. For a linearly
viscoelastic material, such an interrelationship is simple
and can be formulated using Laplace transformation of the
constitutive equations. However, biological materials (e.g.
the MCL) are nonlinear and require a more complex
interrelationship. Thornton et al. [21] observed that
relaxation proceeded faster than creep in ligaments and
showed that linear viscoelastic theory was not able to
phenomenologically model both behaviors with interre-
lated coefficients. They have shown that the predictions
based on Laplace transformation (linear viscoelasticity) are
poor. Hence, use of a nonlinear model to interrelate creep
and relaxation is essential.

The following are single integral constitutive equations
based on nonlinear superposition in which the relaxation
function E(t,e) depends on strain ¢ and the creep function
J(t,0) depends on stress o. J is the ratio of time-dependent
strain to constant (step) applied stress.

a(t) = /Ot E(t — 7,e(7)) % dr, (1a)

a(t) = /OT J(t —1,0(7)) 3—: dr. (1b)

The QLV model assumes the creep compliance J(z,0) to
be separable into a product of time- and stress-dependent
parts and is therefore a special case of the above equations.
We do not make any QLV assumption here: Egs. (1) are
used without such restrictions. Recent studies by Proven-
zano et al. [22] demonstrated that the nonlinear super-
position model can adequately model the strain-dependent
stress-relaxation behavior of ligaments. They show that
nonlinear superposition allows a more direct interpretation
of the relationship between model parameters and physical
behavior. Unlike QLV, the slope or the shape of the
relaxation curve, not just its magnitude, can depend on
strain.

The goal of this study is to formulate an interrelationship
for general nonlinear superposition formulations for creep
and relaxation and to show its ability to predict nonlinear
relaxation from creep by using MCL data.

2. Interrelation of creep and relaxation

Time-dependent (creep) strain due to constant stress can
be written as a sum of immediate and delayed Heaviside
step functions in time H(z)

N
e(t) = e(OVH() + > AeiH(t — 1,). )

i=0
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Each step strain in the summation gives rise to a relaxing
component of stress in view of the definition of the
relaxation function E(z,e), which is the ratio of stress to
(step) strain ¢ as a function of time ¢ and (in nonlinear
materials) also of strain. Nonlinearity is accommodated in
this analysis since the relaxation function E explicitly
depends on strain level.

N
6(1) = e(0)E(1,2(0) + Y AgE(t — t;, &(t;)). 3)
i=0

Here, we assume there is no effect from interactions
between the step components, hence we consider single-
integral-type nonlinear response [3] and exclude responses
that require for their description a multiple integral
formulation.

Dividing Eq. (3) by ¢ and using the definition of creep
compliance J(¢,0) yields

N
1= J(0,0)E(t,2(0) + > AJiE(t — 11, &(17)). 4)
i=0

The creep compliance J(¢,0) is the ratio of strain to (step)
stress ¢ as a function of time t and (in nonlinear materials)
also of stress. Pass to the limit of infinitely many fine step
components to obtain a Stieltjes integral, with 7 as a time
variable of integration

oJ (‘E a)

1 = J(0,0)E(t,£(0)) +/ E(t — 1,¢(1)) (5)

As in the linear interrelation, the time dependence
appears in the integral as dependence on a time variable
of integration. Since for creep under step stress g, o(f) =0
for t<0 and o(¢f) = g, i.e. time independent for >0, we
have &(f) = oJ(t,0); so Eq. (5) becomes

oJ (‘c 0)

1 =J(0,0)E(t,6J(0,0)) + /t E(t—1,0J(1,0))
0
(6)

To develop an explicit relationship between creep and
relaxation, one assumes a particular functional form for
one of the viscoelastic functions. For example, Lakes and
Vanderby [3] used this Stieltjes integral to show that a
separable form (QLV) of creep gives rise to a nonseparable
relaxation function.

To obtain explicit interrelations, several explicit time-
dependent functions are assumed. In the following,
various nonseparable creep functions involving power laws
in time are considered for primary creep. Creep in
physiological ranges of loading is primary creep. Second-
ary creep involves irreversible damage and is outside
the scope of this work. Power laws are used since they
are suitable for modeling the behavior of materials of
interest. Power-law terms have the limitation that the
modulus tends to infinity as time tends to zero, an
unrealistic situation. Since experimental data used for
comparison are available over a limited window of the

time domain, this asymptotic behavior is not obtrusive.
A four-term nonlinear formulation is developed below. On
the basis of an observed trend in the time dependencies for
different stress dependencies, a more general solution is
stated. As the number of terms increases, it becomes easier
to obtain closer curve fits and interrelations, but the
complexity increases as well.

2.1. Nonlinear formulation

The goals of this nonlinear formulation are to

(i) develop an interrelation for the first four terms in creep
compliance and relaxation modulus,

(i1) illustrate the interrelation with experimental results for
ligament, and

(iii) prove that the difference in the power of time of the
dth term in creep and (d—1)th term is constant and is
the same as that for the lower-order terms. This
constrains the structure of any general form for
interrelation of creep compliance and relaxation
modulus, as discussed in Section 2.1.2.

2.1.1. Interrelation of the first four terms

A semi-inverse approach is used. The first term embodies
the well-known power law in time within linear viscoelas-
ticity. Higher-order terms are constructed in such a way as
to fulfill the interrelation integral in Eq. (6).

Assume the creep behavior to be a series of powers of
time 7, as follows:

J(t, O') — gltn +g20_uzm + g3o_2atp + g40.3atr

+ N _|_ gd_zo-(ufz)atk + gd_]o-(uil)uti + gdauut]’.
(6a)

The g, n, p and other coefficients are to be obtained by
curve fitting from experimental creep data. The power
terms n, m and p govern the slope of the creep curve; they
are generally less than 1.

We assume a nonseparable power law form of relaxation
modulus E(z,¢), given as

E(t,e) = f1t7" + fa(t)'t™ + f3e(t)“t7
+ 48 A L (6b)

The f coefficients are calculated in the following from the
creep, assuming a single integral constitutive equations (1).
Powers x, g and s are also calculated. The above two series
are general ones and are developed from our earlier work
on lower-order interrelations [11].

Eqgs. (6a) and (6b) are assumed and an interrelationship
is developed for the first four terms. The single-integral
form based on a Stieltjes integral given as Eq. (5) is
repeated here

oJ(z, a)
ot

1 =J(0,0)E(t,&0)) +/ E(t —,¢(7)) (7
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The interrelation for the first four coefficients is as
follows. Details of the analysis are given in Appendix 1.

1
sin nn

1 =19 nm, (8)

. =mf gl (—n+ 1)I'(m)
/2 g™ r(m —2n+ )I(n)’ 2

1
g(12”+1)n1"(n)1"(2m —3n+1)
x (—f19;2m — n)['(—n + 1)['2m — n)
—f2929imI(m)I'(m — 2n + 1)

ST fgareren =3 ). (10)

3=

P |
T g rGm — 4n + 1)r(n)
x [=(Bm = 2n)f 1g,{I' (—n + DI (3m — 2n)}

=D 0005l G = dn DI
rQ 1
= R ngi (1 Gm — 4+ DI )

— 2m — n)f,g{g:{T (m — 2n+ 1)I' 2m — n)}

F(a+ 1) i
F( ) fzgzg {r@2m—
— mf391°go{T"(—=3n + 2m + I (m)}

?EHS nf29291 (TGm —4n+ DIm)]. (1)

3n+ 1)I'(m)}

This achieves the first goal to develop an interrelation for
the first four terms in creep compliance and relaxation
modulus. Egs. (8)—(11) give the interrelationships for fi, f>,
f3 and f4, respectively, in the relaxation modulus E(z,¢) in
terms of the quantities in the creep compliance J(z,0).

2.1.2. Proof by method of induction

The increment in the power of the time term in creep
compliance is by a fixed number, compared to the previous
term. Our second goal was to prove that the difference in
the power of time of the dth term in creep and the (d—1)th
term is constant and is the same as that for the lower-order
terms. The purpose is to generalize the low-order inter-
relation to many terms. From the above equations, we have
seen that f| depends only on g, f> depends on g, and ¢,, f3
depends on g, g»> and g5 and f; depends on g1, ¢», g3 and g4.
So, f, must depend on all the terms from g, to g,, therefore
high-order interrelations grow rapidly in complexity.

Analysis in Appendix 2 shows that the increment in the
power of the time term in creep compliance is by a fixed
number, compared to the previous term. It also demon-
strates that creep compliance can be written in summation

notation as follows:

X— X
J(l, O') Z Zg ua erJ} (12)

J=—1u d=1

><

—1

Il
<)

where X is any integer starting from 1, and y = m—n from
Appendix 2.
Rewriting Eq. (12) in an expanded form gives

J(l, O') — glln +g20_alm +g3o_2ul2m n + ga O_3at3m 2n 4.

From Egs. (30) and (34) in Appendix 1, p = 2m—n and
r = 3m—2n.

The above equation reduces to the following equation,
which is the same as Eq. (6a).

J(t,0) = g, " + g0 + g302“t1’ + gy -

Correspondingly the relaxation modulus in summation
notation can be written as follows:

X-2 X-1 X

E(l, 8([)) — Z Z Zfd‘g(t)uat_[(ua+3)n_2m_(J_I)y]s (13)

J=—1 u=0 d=1

where X is any integer starting from 1, and y = m—n from
Appendix 2.
Rewriting Eq. (13) in an expanded form gives

E(l, 8) :flt—n +_f28(t)a[_[(a+2)”_n1] +f38([)2a[—[(2a+3)n—2m]

+f48(t)3atf[(3a+4)nf3m] 4.

From Egs. (25), (29) and (34) in Appendix 1, x =
[(a+2)n—m], g = [(2a+3)n—2m] and s = [(3a + 4)n—3m].

The above equation reduces to the following equation
which is the same as Eq. (6b).

E(t,e) = f 17"+ fLe(t)" 1™ 4+ f36()* 170 + f4e(0)> 1™ +

Parameters obtained from experimental curve fits and
theoretical predictions for two- and three-term equations
are summarized in the Table 1.

The general form is illustrated in the following example.
If we require the first three terms of creep and correspond-
ing terms of relaxation, then substituting the result
y=m—n and X = 3 in Eq. (12) yields

J(l, O') — gltm—(m—n) + gzaalm 4 g30_2atm+(m—n)'
So

J(t,0) = g,t" + g,0°t" + g_;az“tzm’”. (14)

Table 1
Parameters obtained from experimental curve fits and theoretical
predictions for two- and three-term equations

Model Parameters (experimental fit) Parameters (prediction)
Two-term g1, 92, A, n, M S, /o
Three-term g1, g, g3, @, n, m S fos f3
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Substituting y = m—n and X = 3 in Eq. (13) yields

E(t,¢(1)) zflt*[3n72m+2(m7n)] +fzg(t)atf[(a+3)n72m+mfn]
—|—f3g([)2“ l*[(2u+3)n72m].

So

E(l, S(Z)) :fl T +f'28(t)at—[(2+a)n—m] +f'38(t)2at—[(2(1+3)n—2m]'
(15)

These results match with those obtained from the above
four-term formulation.

3. Application of the nonlinear formulation

The above method to model nonlinear creep and
interrelate it to nonlinear stress relaxation are demon-
strated now on rabbit MCL data. Both two- and three-
term forms were used from the above general formulation
to be applied to primary creep data for MCL of a rabbit.

Ligament data were collected for both creep and
relaxation at different stress and strain levels, respectively
[23]. Rabbit MCLs were serially tested to various levels of
creep and relaxation for a period of 100s followed by a
period of recovery, which lasted 1000s. The stress-
relaxation tests were carried out first and corresponding
creep tests followed on the contralateral ligament. Load
values corresponding to the peak force of the contralateral
stress relaxation test were used in the creep tests. The
rationale for using contralateral ligaments was to avoid the
possibility of nonrecoverable load history effects. The first
loading was considered a preconditioning cycle and
subsequent loadings were recorded. A preload of 0.5N
was applied to the ligament. Ligaments were kept saturated
at ambient temperature. Deformation was inferred from
digitized video images of small silicone markers on the
ligament surface.

Ligament data were plotted on a log—log scale with the
first point plotted at 1s into the test. The rise time in the
stress was 0.1s. The creep rate was seen to decrease with
higher levels of stress and the rate of relaxation was seen to
decrease at higher levels of strain, which is due to the
strain-stiffening nonlinearity observed in a ligament.
Stresses at which three creep tests were carried out were
8.4, 18.4 and 32.8 MPa. Strains at which corresponding
relaxation tests were carried out were 2.1%, 3.6% and
5.5%. It was assumed that there is no relation between the
steps, so a multiple-integral form was not considered and
instead a single-integral form was used.

The method used to fit the curves was as follows. The
time scale of the creep and relaxation was divided by a
constant (1.5s for the ligament data) in order to simplify
calculation of powers. Isochronal plots (strain vs. stress at
a given time) were generated for two different times, 1.5
and 90s). The first isochronal was curve fitted with
¢ = g10+¢gr0"* for a two-term form to obtain the values
for g, and ¢,, and ¢ = glo+gzal'85+g202‘7 for a three-term

—— Y% of strain (2 term) —-@ - - 9% of stress (2 term)

— % - 9 of strain (3 term) ---{3}--- 9% of stress (3 term)

140 140
% strain and % stress vs. No. of terms 1

rgot"

120 - F 3 term fit of strain i 71120
I \ — rom a 3 term fit of strain in creep |
From a 2 term fit of strain in cree
£ 100 * J10 E
; L . From a 2 term prediction of stress | ;
g 3 \ in relaxation from creep g
C 80 " 480 ¢
o o
A [ A
Y [ E
-g 60 [ fet™ From a 3 term prediction | 60 E
‘w - of stress in relaxation from §
*E %, creep @
= r 2 .m S
N g,0°t =)
; 40 r All at t = 10s 140 '

gs(y“t(lm-n) B

20 + fzslt-(Sn-m) f3£3 t-(Sn-Zm) - 20

Term

Fig. 1. This graph shows the percent strain due to each term in the two-
and three-term curve fit for creep given by &(r) = gyo1"+ goo°t" and

&(t) = g101"+go0> 1"+ g30° 2" ", respectively, and the percent stress due to

each term in the two- and three-term prediction for relaxation given by
o(1) = fiet ™"+ 627 and (1) = fiet ™"+ o2t ST 4 fyg3 G2,
respectively. g1, g2, g3, n and m are obtained by fitting the isochronals
obtained from creep, while f| and f> are obtained from the interrelation.
Values of each term in the graph are for # = 10s. In these interrelations, g,
is negative. All the values are represented as modulus of % strain.

form to obtain the values for ¢g;, g» and g3. The second
isochronal was curve fitted with ¢ = g 61"+ g,0'3°¢" for a
two-term form with known values of ¢g; and g, to obtain n
and m. A three-term fit based on &= g,6t"+g,0'®
"+ g>0> """ with known values of ¢, ¢» and g; was
used to obtain n and m. Owing to the relation ¢ = 6*J(¢,0),
1.85 from the above equation refers to ‘e + 1’ from Eq. (6a),
2.7 refers to 2a+ 1’ from Eq. (6a) and “2m—n’ refers to ‘p’
from Eq. (6a). These values of g, ¢g», g3, » and m were
used to fit the different creep curves. Kaleidagraph
(Synergy Software, 2457 Perkiomen Avenue, Reading,
PA 19606, USA) uses the nonlinear least-squares estima-
tion based on the Levenberg—Marquardt algorithm [24]
for curve fitting.

It is shown in Fig. 1 that the percentage of strain and
stress due to the first term in creep (g;ot”) and relaxation
(fiet™"), respectively, was higher than that due to the rest of
the terms. Also, the percentage of strain and stress in the
corresponding terms becomes less. The first isochronal was
curve fitted with & = g;0+g,0' for a two-term form to
obtain the values for g; and g,. This process yields a very
high value of g; and a negative value of g,. This is the
reason for the term g;0¢” to be more than 100%. It is also
to be noted that absolute values of g; and ¢, are used in the
Fig. 1. Percentage stress and strain due to each term is
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calculated as follows:

Percentage strain due to first term in creep

— |gl|tn
(1g110(Dt" + |g,|aetiem + - ..

Percentage stress due to first term in relaxation
_ il
(1 e + f5le(™ > 4 )

where |g1/, |92, |f1] and |f5| represent the absolute observed
values.

A four-term form cannot be used to fit isochronals
obtained from three creep curves since there are too many
parameters to fit the number of points. So, if there are ‘»’
creep curves we are trying to fit then the number of terms
in the creep compliance can either be equal to ‘»’ or less
than ‘n’.

Using the interrelation in Egs. (8)—(10), the predicted
relaxation curve was generated and is shown in Fig. 3. It is
seen that a three-term prediction is much better than a two-
term prediction within the range of interpolated data. The
window of time and strain in these experimental results is
relatively narrow. Results over a wider range would likely
be more demanding, and could then require more terms for
fitting and for interrelation.

i

4. Discussion

The goal of this study is to formulate an interrelation for
general nonlinear superposition formulations for creep and
relaxation and to show its ability to predict nonlinear
relaxation from creep, using MCL data. Creep and
relaxation were interrelated using the single-integral non-
linear superposition principle. The model was fit to MCL
data in which the rate of creep was stress dependent. The
model was then used to predict stress relaxation. All
predictions made are within the range of interpolated data
and may not hold true for the extrapolated data. Also, if
sprain damage occurs in a ligament, new physical processes
occur. The fits and predictions obtained with higher
number of terms are better than those obtained with a
lesser number of terms. Better results with curve fitting and
prediction are obtained with more number of terms in
creep compliance and relaxation modulus. However, the
number of terms in the creep compliance kernel cannot be
more than the number of creep curves being fitted as the
system would then be overdetermined. Figs. 2 and 3 show
the fit and the prediction obtained with a two- and a three-
term formulation. Lower-order terms accounted for most
of the time dependence over this narrow range of time
scale. Because of the generality in the phenomenological
viscoelastic model and because of the analytical inter-
relationship developed herein, we anticipate the method
can be used to model robustly many complex viscoelastic
materials over larger ranges of time and strain. Limitations
of power-law creep considered here include the singularity

Solid lines, experimental data
0.1
I 03 =32.77 MPa
£ - 2 term, 18.42 MPa 0,=18.42 MPa
-2 5 i
& | &
@ e dim i im e |
PSS linear, 18.42 MPa
T linearmodel, ‘
\ 8.39 MPa 8.39 MPa 3-term fit, 8.39 MPa
0.01 A L A

1 10 100
time (seconds)

Fig. 2. Curve fitting of creep of ligament. Data of rabbit medial collateral
ligament at three different stress levels, o, (8.4 MPa), o, (18.4 MPa) and g3
(32.8 MPa). g, ¢, g3, n and m are obtained by fitting the isochronals
obtained from creep. Two- and three-term fits for creep are given by
&(1) = giot"+goa" " and  e(f) = gi0t" + 920" B +g36> 72", respec-
tively. Linear fit for creep is given by &(f) = g,ot". Dense points (solid

line): experiment. Thick long dashes (—-—-——) are the three-term fits,
thin short dashes (----------- ) are the two-term fits and center lines
(=== ) are the linear fits.
100 F 3-t 0.036 idli i

= Crmwz .03 linear, Solid lines, experimental

r -term, 0.036

i 0.036 linear, 0.055

A N ST

Stress (MPa)
=
T

3-term prediction
0.021

’ 2-term prediction,
0.021 0.021

linear model prediction,

1 10 100
time (seconds)

Fig. 3. Prediction of relaxation from creep; comparison with experimental

relaxation of ligament. The three corresponding strain levels for relaxation

are ¢, (2.1%), & (3.6%) and &3 (5.5%). Two- and three-term predictions

for relaxation are given by o(f) = fier "+ foe! @8 and
_ —n 1.85 ,—(2.85n—m) 2.7 ,—(4.7n—2m) : .

o(t) = fiet "+ fre >t +f3¢7 't , respectively. Linear pre-

dictions for relaxation is given by o(z) = fiet". Dense points (solid line):

experiment. Thick long dashes (——-——) are the three-term predictions,
thin short dashes (----------- ) are the two-term predictions, center lines
(=== ) are the linear predictions.

at time zero (which is not accessible experimentally), as well
as the complexity of model implementations involving
many terms. These, however, are more than compensated
by the experimental test time and cost, which may be saved
by using analytical interrelations. In addition, the model
has limitations that are inherent with a single-integral
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nonlinear superposition approach to viscoelasticity.
Further testing should be done to explore its applicability
to more complex loading regimes.
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Appendix 1

This section contains the details of the analysis.
Derivation of the four-term interrelation is as follows:
The derivative of the creep function J(¢) is

ng,-T, 7 — gy 4 g 4 pgs®ir!
+rg, g1 4+ .. 4 kgdfzo'(u_z)alk_l
gy g0 g0t (16)
Since
() = J(0)o. a
So

8([) — glo_tn +g20.a+ltn1 4 g362a+ltp +g4o_3a+1tr
4+t gd_zo—(f—2)a+1[k + gd_lo_(f'—l)a+lli
+ ng'fa+1tj.

Substituting the above result of ¢(¢) into the equation for
the relaxation modulus, we get

E(t,a(0) =107 + [t [g101" + o0 11"

F gy 4 g, g, oDk

F gy oD g guetl g

+ 3t g 01" + gr0“ T + gy0* P

g g, ol

F gy atherl g guatl gl g s

x [9,00" + ¢y " + gio2at

g g, e

t gy ot herl g g guatl e

+ o+ fulgi0t" + g0" T+ gyt P

g g, e

F gy athetl g guat] guayh (18)

The interrelationship is developed for the first four

terms. Since we are conducting a third-order analysis in o,
we ignore all the terms in Eq. (18) above the power of

3ina.
The binomial expansion can be given as follows [21]:

L—N

i ro+1) x"y

vo__
CHN =2 Tt al

and the gamma function is defined as

r'v)= / e dr.
0

Gamma functions appear in the equation of the
relaxation modulus below since the binomial expansion
involves the use of gamma functions.

—n —X a d .an F(a + l) a—
Bt e0) = /117" + /> lgio" 1" + == 00
I(a+1)
2a m+(a—1)n a—1 3(1 p+(a—1)n
t —_— t
Y + ) 9391
F(Cl + 1) a—1 ghd t+(a71)n
teot @ Ja-191
1F(a+ 1) 2 a—2 '%u 2m+(a—2)n
9291 t
2 F( 1)
+- +g2gd 2ga 2 Pl m+k+(a72)n] +f3t7q
I'Ca+1)
2a 2a 2an 2a—1 _3a m+(2a— 1)
t —_— t
X[ + TG 291 °
I'Ca+1)

+ .. 4 2a—1 _ua Jk+( Zafl)n]

9i2917 01

+fd l—h[Jleo_ua[uan]

I'(2a)
+ [t gt ]

_ I'la+1
Blt.o0) =177 + oot 4 D gt
ey T@+1)
2a gm+(a—1)n—x a—1
X 0t +—— g
F( ) 2939
e T(a+1)
3a p+(a—1)n—x a—1 gl 1
X g7t +——— /294191
I—v( ) 2Yd-1
L M
_ 1 n X
+@—1) 2F( )f 9291

O_3a 2m+(a—2)n—x . +f2ngd zgcll—Z

% o tm+k+(u 2)n— v_'_f gZa 2a 2an7q

I'Ca+1) 2a-1 g3a gn+Qa—1n—g
I'2a) —— /39 9291
F(za + 1) 2a—1 g k+(2u—1)n—q
R < oy Y

+f g3a 3a %m s +f gua ud quan— h7 (19)

J(0) = 0. Therefore, the first term in the Stieltjes integral
vanishes.

Upon substituting Eqgs. (19) and (16) into the Stieltjes
integral given in Eq. (7) in Section 2.1.1 we obtain

a an—x F(a + 1)

1= /{f1 "+ fagi0"t Tt ) 29291

F(a + 1) a—1 a'%a Pp+(a—1)n— ‘c F((l + 1)
F(a) 2939 t F( )

1 F(a+1)

2T(a—1)

a—2 ltal!n+k+(a 2)n—x

a—1 2a m+(a71)nfx

1
———— 294191

fz 2 a-2 30 2m+(a—2)n—x

% O.ualH-(a—l)n—x 4= 94

<+ 129294291
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I'Ca+1) a1
F(Za) 3g2g1

%a—l e tk+(2a—l)n—q

+f3 g%aO_Za tZan—q + O_3alm+(2a—l)n—q

+ - +%f3gd—zg
+1, g?a M= Ly faga™ tuanfh}
{ng, 7"~ + mg,a*7"!
+rguoiT T 4 + kg, oDk
+ig, 1oV 4 jg 6" (20)
Eq. (20) is of the form
1 + (0)o + (0)a? + (0)6° = A + Bo + Co* + Do>. (21)
So
A=1,B=0,C=0and D=0. (22)

On the basis of Egs. (21) and (22), we equate ‘a’-’
independent terms in Eq. (20) to 1 and all ‘¢®, ‘6>, ‘¢
and ‘"’ terms in Eq. (20) to 0

From Eq. (20), we get

+pg3o_2a,cp—l

t
1=fi9, / n(t — 7)™t dr,
0

1
sin nmn

1 =79

The above equation is the same as Eq. (8) in Section
2.1.1. Now, we take all the ‘¢’ terms and equate them to 0.
From Eq. (20), we get

nm. (23)

T
0 :flgz/ m(t — )"t dr
0

T
+ gt / n(t — )™ >1" 1 dr,
0

I'(— nr
0 =f1g2m{ lg(n’,ji_n)+(1r;l)}tm_n +fzg‘11+1”

{ I'(an — x + DI (n) }l(a-‘rl)n—x
I'(a+n—x+1) '

For Eq. (24) to be true, there are two solutions:

24

(1) fi. f>, 91, g2, m or n are zero or
(2) powers of time of both the terms are the same, i.e.

m—n = (a+ )n—x.

So, since solution 1 entails an elastic not a viscoelastic
material,

m—n=(@a+ )n—x.

Therefore,
x=Q2+an—m, (25)
_ F(—i’l + 1)F(Wl) m—n
0= T T )
a1 F(Cl”l - X+ l)F(n) m—n
+f 291" n{p((a+1)n—x+l)}}l .

Therefore

0 =f1g2m{r(_n + l)F(m)}

I'm—n+1)

+fzg‘f+1”{ I'(an — x+ DI'(n) }

I'a+1)ym—x+1)

The first solution is not of interest, since it corresponds
to a purely elastic material, so the second one is used to
account for the viscoelasticity.

Canceling out the common terms from Eq. (24),
we get

0 =f19,{(I'(—n + 1)I(m)}
+ f2g" T T (m = 2n + DI (n)}. (26)

Solving for f>, we obtain

[ = —mf 1g,I'(—n+ D)I'(m)
2

g™ I(m —2n 4+ DHI(n) @7

same as Eq. (9) in
22 terms to 0. From

The above equation is the
Section 2.1.1. Now, we equate all ‘o
Eq. (20), we get

t

t
0=/191 / (6= 0" de + fagan / (i —
0 0

¢ _ ym+(a—1n—x
x " dr +7F(a +1) 29(1192/ =0
I'(a) 0

t
x 7" 1dt +f3g[1’/ n(t — 1) de,
0

It DI,
I'p—n+1)
a F(Cln - X+ I)F(m) an—x—+m F(a+ 1)

+fzglgzm{r(an_x+m+1)}t : I'(a)

o F(m—i—(a—l)n—x‘i‘l)r(”) an—x-+m
xfzglgzn{ I(m+an—x+1) }t '
I'(2an — g+ DI'(n) } [Ca+ln—g
[Qa+hn—q+1) '

0=flg3p{

+f3g%“n{ (28)

For Eq. (28) to be true, there are two solutions:

(1) /1, /2, 91, g2, g3, m or n are zero or
(2) powers of time of all the terms in Eq. (28) are the same,

ie. p—n=an—x+m= 2a+1)n—q.

So, (Ra+ln—g=an—x+m=p—n. Since x=
2+ayn—m, 2a+1)n—q = an—2n—an+m+m = 2m—2n. So

q= Q2a+3)n—2m, (29)

2m—2n=p—n,
p=2m—n. (30)
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If powers of time terms are the same then Eq. (28) can be
written as

B 2a. | TQan—q+ DI'(n)
0= {f391 n{F((Za + Dn—q+ 1)}

i I'(— nr

P I'(an — x + 1)I'(m) I'la+1)
+f2glg2m{F(an —x+m+ 1)} I'(a)
P I'm+((@—Dn—x+ DHI'(n) _n
Xf29192”{ Tmtan—x+1) }}t" .
So
a0 [ TQan— g+ DI'(n)
0=7s9i ”{r((za Fhn—q+ 1)}
I'(— nr
P I'(an — x + 1)I'(m)
+fzglgzM{F(an_x+m+ 1)}
+F(a+1)f B n{F(m+(a—l)n—x+l)F(n)}
I'(a) 29192 I'm+an—x+1)

Again, only the second solution is of interest since
ligament is a viscoelastic material.
Substituting results (30) and (29) into (28), we get

I'(—n+ DHI'2m — n)} )
TCm—2n+1)

I'(m—2n+ I)F(m)}tz(mn)

TCm—2n+ 1)

I'a+1) £og n{F(2m —3n+ l)F(n)}tz(m_n)
r@ 29"\ rom -2+ 1)

FQm—=3n+ DI@) o0
2a+1 2(m—n)
+/39 { rem—m+1) &

0 =f1g3(2m—n){

+f zg‘fgzM{

(31

Simplifying Eq. (31) and solving for f3, we get

0 =/19:2m — n{I'(=n+ DI 2m — n)}
I'a+1)

+f291g,m{I(m — 2n + 1) (m)} + @)

x [2919:n{I'(2m — 3n + 1)G(n)}
+£307 (T 2m — 3n + 1)G(n)},
1
g Inr(mr@m —3n+1)
x (—f19;2m — n)['(—n + DI'2m — n)
Ir'a+1)
I'(a)
X f2g2g1nl () (2m — 3n + 1)). (32)

— [2929{mI (M) (m — 2n + 1) —

The above equation is the same as Eq. (10) in
Section 2.1.1.
Now we equate all ‘o>* terms to 0.

From Eq. (20), we get

! o I'a+1) (!
0= t— n_r 1d a
/0 1194t — )"t dr + @ /0 nf2g1a9;

I'a+1)
I'(2a)

t
x (l _ T)er(Zafl)nqunfl dr +/ nf4g?“+1(t _ T)3unfs
0

t
% (l _ _L,)p+(a—l)l1—x_cn—l dr+ ng%“ngg

I'la+1)
I'(a)

! t
) / mf 29929101 (1 — )" e / mf391'9;
0 0

t
x " dr + / 2995t — )™ P de +
0

o Ia+1) (! _
(=0t LD [agagt

x (Z _ 1)2)11+(a—2)n—x_5n—1 dr.

I'(-n+0I@ ,., I'(a+1) , |,
0=rf194 To—nt1) 4 @ nf 29195
I'Gm—4n+1D)I'(n) 5, 5, 1QRa+1) ,,
t* - @@z
rGm—3n+1) T2a)y "9/
F(3m 4n + I)F(I’l) 3m 3n + f 3u+1
rGm—3n+1) 49

F(3an — s+ 1)I(n) [BatDn=s
F((3a+ Dn—s+1)
I'(m—2n+1D)I'2m —

+(2m —n)f 19193

}’l) 3m—3n F(a+ 1) 2 a—1
Tom—3nt 1) T r@ "9
I'Cm —3n+ 1)I'(m) m=3n
TGm—3n+1) +mf3i'6
P304 2m 4 DI sy T@41) o
TGm—3n+1) Ta—1) 7299
I'Gm—4n+ DI'(n) 5,3,
P, 33
“TTGm—3n+1) (33)

For Eq. (33) to be true, there are two solutions:

(D) /1, f2, /3> 915 92, g3, g4, M OT n are zero or
(2) powers of time of all the terms in Eq. (33) are the same,

i.e. r—n = 3m—3n = Ba+t1l)n—s.

So, r—n = 3m—3n.

Thus,
r=3m—2n (34)
and Ba+ 1)n —s =3m — 3n.

So,
s=Ba+4)n—-3m. (35

If powers of the time terms are the same, then Eq. (33)
can be written as

r DI Ta+1)
0= {rf 194 ;(rn +nl 1(;) (?(:) ) nf 29195
I'Gm—4n+1)I(n) I'Ca+1) ,,
rGm—3n+1) raa "9
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I'GGm—4n+ I)F(n) 3ap1 T'Ban — s+ 1)I(n)

I'Gm—3n+1) +fag) I'(Ga+n—s+1)
I'm—2n+ D)I'2m — n)

+ (2m — n)f 199,

TGm—3n+1)
I'(a+ l)m > ael +F(2m—3n+1)F(m)
@ V2929 TGm—3n+1)
I'(=3n+2m+ 1)I'(m)
2a
0 T G R 1)
I'la+ l)n s a1 I'Gm —4n+ 1HI'(n) jrn
Ta—10"29 “TrGm —3n+1)
So,
I'(—n+DI(r) TI'(a+1) u
0=1/194 To—n+tl) @ nf 19195
[Gm—dn+ DI TQat1) o, ’
TGm—3n+1) [2a) "M19Js

FGm—dnt DI | gy TGan— s+ D)
Gm—3n+10) 7Y TGathn—s+1)
I'(m—2n+ 1)I'2m — n)

+ (2m — n)f 1919,

I'Gm—3n+1)
I'a+1) 2 a1 T'2m —3n+ 1)I'(m)
I(a) 27271 I3m—3n+1)
. T(=3n+2m+ DI (m)
R R v WS
I'(a+1) y gy T'Gm —4n+ 1)I'(n)
T ra=0""N T Gm —sn )

Again, only the second solution is of interest since
ligament is a viscoelastic material.

Substituting Egs. (34) and (35) into Eq. (33) and solving
for f, gives us

1
= G2
fa {ng(lsu+1)1"(3m —4n + I)F(n)} [ (Bm —2n)f g,

< {[(=n+ ) Gm — 2} — & (I‘f (Jar)l) 1f 20195
<TG = dn-+ D) =D gt

x {I'Bm —4n + DI'(n)} — 2m — n)f 19193

= 20 DF @ =) = D gl

x AT Q2m = 3n+ DI(m)} — mf 3919,

x ([(=3n + 2m + DI (m)} — E @t 1; nf 20300

< {T(3m — 4n + ) (n)}]. (36)

The above equation is the same as Eq. (12) in
Section 2.1.1.

Appendix 2

From Eq. (20) given in the analysis in the Appendix 1,
we equate some of the ‘¢"” terms to 0 as was done for the

¢, ¢ and ¢ terms.
0=jf194 F(F#B;m " gy f 291
e T F(lcf(+)l)f 0ot

F(Wl —3n + I + I)F(n) —2n+i a—1
Fm— it 1) " + 1129294291
ICm—4n+k+DI0) 5, 3,04 2
P kf 397"
r@m—3n+k+1) A0 G
I'@Cm—=3n+ DIK) 5 3pn,  T'Ca+1) 2a
X [Gm—3n+k+1) t n ' a) S 394297
ICm—4n+k+DI0N) 5, 3,0k ua+1
m=3
rem-—3n+k+1) ol
F(uan —h+ DI '(n)
F((ua+ Dn—h+1)

For Eq. (37) to be true, there are two solutions:

(ua+1)n—h 4 (37)

(1) .fl’f27.f3’ fd’ 91> 9a> 9a—1> 9a—2, M, k’ l7] Or n are zero or

(2) powers of time of all the 8 terms in the above equation
are the same, i.e. —ntj=m—2n+i=2m—3n+k =
(ua+1)n—nh.

Only the second solution is of interest since the first
solution eliminates all time dependences, reducing the
viscoelastic material to an elastic one. Therefore, for Eq.
(37) to be true, we need to have powers of all the time terms
in it to be the same.

So, m—2n+i = uan+n—h.

Thus,

h=@wa+3)n—m-—1i (38)
and m—2n+i= —n+j.

So j = m—n+i

Therefore,
j—i=m—n. (39)

Then Eq. (37) can be written as follows:

o= LntDIG) I(m —2n+ 1)I(i)
_{Jfl T (Cn+)) Tm—2n+tit+l)
I'a+1) L TQ2m = 3n+ DI(k)
I'(a) IQm—3n+k+1)
+nF(a+1)f F(m—3n+l+1)F(n)
r@ "Y' T —n+yit)
a1 T'Cm—4n+k+ 1)I'(n)
+ /29294291 [Gm—3ntk+0)
e T@m—=3n4 DI'(k)
K599 T k1)
I'Ca+1) 2g I'Cm —4n+k+ 1) '(n)
I'(2a) T 394291 IrQCm-—3n+k+1)
, T(wan — h+ 1)I'(n) N ~~}t‘"+j.
I'(ua+n—h+1)

+ 941/ 291

+k—

———— 29294291

+ n fd gua+
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Therefore,
. Ir'(—n+1DIg) . o Tm —=2n+ 1)I)
0 _]f]gd F(—I’l +]) + lgd—1f2gl I-v(m —2n +i+ 1)
I'la+1) 1 I'Cm —3n+ DI'(k)
k——2
k= 292949 T kT D)
F(a+1)f ,Tm—=3n+i+ 1)I(n)
I'(a) 29a-191 I'm—2n+i+1)

w1 TCm—4n+k+ 1)I'(n)
rem-3n+k+1)
r@2m—3n+ 1)I'(k)

+nf 29294291

TR a2 F a3k )
I'Qa+1) rQatl) . =~ I'2m —4n +k 4+ )I'(n)
r2a) 739" Trom—3n+k+1)

ua+1 F(uan —h + I)F(l’l)
I'(wa+1n—h+1)

This procedure does not, however, give the relationship
between the f and the g coefficients. That relationship is
developed for each order of the analysis, and it becomes
more complex as the order increases. Explicit forms are
developed up to fourth order in the present work.

General interrelations are expressed as follows. From

gs. (25), (29), (30) (34) and (35) in Appendix 1 and
Eqgs. (38) and (39) in Appendix 2 and if y = m—n, then

+f’lfd

J(1,0) = gi1" + g0 + 367" + gy "
+ -+ gd—la(u _ l)ati 4 gdauatiﬂ"
and
E(t,8) = £, + fe(0) 40
+f3 E(Z)Z“Z—[(2a+3)n—2m]
+f48(t)3at—[(3a+4)n—3m]
+ ... +fdg(l)uat—[(ua+3)n—m—i]. (40)
The creep compliance can also be written as
J(t, 0) — gltn 4 gzo.atm + g362utm+y + g463atm+2y

+ P + gd_la(u — l)atm+(d_3)y + gdauatm+(d_2)y~

(41)

The power coefficients of time ¢ presented in Eq. (6) were

presented as independent quantities. The relations among

them shown here are a consequence of the interrelation
analysis.

Eq. (41) can also be written in summation notation as
follows:

Z Z > gao (42)

J=—1 u=0 d=1

where X is any integer starting from 1.

This is the same as Eq. (12) shown in Section 2.1.2.

Correspondingly, the relaxation modulus in summation
notation can be written as follows:

From Eq. (42), the power of time of the dth term in creep
is m+Jy.

From Eq. (38), the derived power of time for the dth
term in relaxation is (ua + 3)n—m—i, where i is the power of
time of the (d—1)th term in creep, which is also m+ (J—1)y,
so i = m+ (J—1)y can be substituted in (ua+3)n—m—i.

Solving that gives us the power of time of the dth term in
relaxation as (ua+3)n—2m—(J—1)y, so Eq. (40) for
relaxation modulus in summation notation becomes

X— X
E(l, 8([)) — Z Zfda(t)uat—[(ua+3)n—2m—(J—l)y], (43)

J=—1 u=0 d=1

2 X-1

where X is any integer starting from 1.
This is the same as Eq. (13) shown in Section 2.1.2.
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