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Abstract
This article describes refinements to an instrument for determining the viscoelastic properties of a

solid material isothermally, with a single apparatus, over 10 decades of time and frequency. Torque is
applied electromagnetically to a specimen fixed at one end. Specimen deformation is determined via a
laser beam reflected from the other end upon a split diode detector. Phase resolution is improved by the
use of a lock in amplifier at high frequency and by the use of Lissajous figures to measure phase,
allowing study of materials of moderate loss (0.008 ≤ tan δ ≤ 0.2) in addition to materials with high loss

(tan δ ≈ 1). The rigidity of the instrument is increased by modifications in the specimen support
geometry. The range of equivalent frequency for torsion is from less than 10-6 Hz to more than 104 Hz.
Digital methods are incorporated in the creep measurements and in phase measurements.

I.  INTRODUCTION
In a previous paper from this laboratory 1 , Chen and Lakes reported the development of an

instrument for mechanical characterization of viscoelastic materials over a wide range of ten decades (a
factor of 1010) of time and frequency.  It was capable of quasi-static, subresonant dynamic, and resonant
experiments in torsion and in bending. The mechanical portion of the instrument is shown schematically
on the left of Fig. 1.

The rationale for the development of such an instrument is as follows. A variety of instruments
and methods are available for viscoelastic studies as reviewed by Ferry 2.  Most such methods cover a
few decades or less of time or frequency. For example, the Fitzgerald apparatus 3 applies a shear load to
solids or liquids and permits the operator to infer mechanical properties from measurements of electrical
impedance. The frequency range covers 1.7 decades from 100 Hz to 5 kHz 3. Static experiments cannot
be done with this apparatus. The multiple lumped resonator concept of Birnboim has been applied by
Schrag and Johnson 4 to viscoelastic measurements on fluids. In this approach, torsional oscillations are
set up in a system of cylindrical inertia members joined by rods. Angular displacement is measured by
reflecting light from a mirror on the oscillator and modulating the light intensity via Ronchi gratings. This
is a resonant method which provides data at discrete frequencies from 100 Hz to 8300 Hz: two decades.
Quasistatic experiments cannot be done with this apparatus, however modifications of the Birnboim
apparatus permit low frequency studies down to 0.01 Hz 5. Recent developments in signal processing
permit good precision down to 10-6 Hz 6.  High frequency studies may be conducted using resonance or
wave propagation methods as reviewed by McSkimin 7. For example, the piezoelectric composite
oscillator method makes use of quartz crystals to excite a solid specimen 8,9 ultrasonically in longitudinal
or torsional resonance or a fluid 10  in shear. Such methods do not allow quasistatic or low frequency
measurements, however by exciting higher harmonics in the quartz rod, it is possible to obtain more than
one decade. An automated creep apparatus described by Plazek 11  makes use of electromagnetic drive
and optical measurement of rotation. It covers a range of time from about half a second to several days:
six decades.



2
For some materials, particularly amorphous polymers, it is possible to infer material properties

over a wider range from test results taken at different temperatures. Materials for which such a procedure
is possible are called thermorheologically simple. Many examples covering 12 or more decades are
known 2,11. Many materials, particularly composites and materials in which multiple viscoelastic
mechanisms are active, are not thermorheologically simple. Direct measurement of properties over many
decades is required for a full characterization of the material. In most experiments which isothermally
cover a wide range of frequency, a set of different experiments is performed, each one conducted with a
different instrument 12 . A range of 6.5 decades was attained with two devices, one for 0.0002 Hz to 30
Hz, and a second device for 20 to 1000 Hz 13 , a range of 6 decades  (10-5 to 10 Hz) with one device 14

and a range of 8 decades 15  (10-6 to 100 Hz) with one device. In such instruments, the low frequency
limit is dictated primarily by the experimenter's patience in conducting lengthy dynamic or creep tests,
and secondarily by mechanical drift or by drift in any electronics used. If one is willing to perform creep
tests lasting several years, with a rise time less than one second, it is possible to achieve many decades
16 . The upper frequency limit is governed by resonances in the specimen and in the instrument and how
they are dealt with.

In the prior version of the present instrument, the specimen was attached, using a cyanoacrylate
adhesive, to a vertical rod connected to a rigid framework of rods.  A disc shaped permanent magnet,
made of high intensity neodymium-iron-boron, and a small mirror were attached, using the same
adhesive, to the free end of the specimen.  A current was applied to the Helmholtz coil, thus loading the
specimen through the action of the coil’s magnetic field on the magnetic driving disc.  Angular
displacement was measured by laser interferometry.  An image of the first grating was formed on the
specimen’s mirror and projected through the second grating.  The interaction of the moving image of the
first grating and the fixed second grating resulted in interference fringes proportional to angular
displacement.  The fringe signal was converted to an electronic signal by the light detector.

For the case of a quasi-static test (creep), the input to the Helmholtz coil was a DC signal which
resulted in a constant torque at the end of the specimen.  Angular displacement was measured as a
function of time t and the creep compliance, J(t), was calculated as the ratio of creep strain to applied
stress.  For the case of a dynamic experiment, the input to the Helmholtz coil was an AC signal which
resulted in a sinusoidal torque of known magnitude at the end of the specimen.  Angular displacement
was measured. The absolute dynamic modulus |M(ω)| and the loss tangent, tan δ, were inferred via an
inversion of the exact analytical solution of the problem of dynamic torsion of a rod fixed at one end and
with a mass at the other end. This analysis is valid both for resonant conditions and through resonances,
for tan δ of any magnitude. This approach was particularly useful for viscoelastic elastomers with a high

tan δ.  For low-loss materials it was also possible to calculate tan δ  from the width of the frequency
response curve, as is commonly done.

The wide range of time and frequency (ten decades) was achieved by minimizing the inertia
attached to the specimen, using a simple specimen geometry governed by a known analytical solution
amenable to numerical inversion, and using driving and detection methods free of resonances and also
capable of quasi-static tests.

The instrument proved very useful for mechanical characterization of low-stiffness, high-loss
materials such as polymers and viscoelastic elastomers. Its limitations became apparent recently when the
laboratory began investigating candidate materials for use as constituents in high-stiffness, high-loss
metal-matrix composites.  Specifically, instrument compliance affected experimental results for some
thick specimens and phase resolution was found to be insufficient for materials of tan δ less than 0.1.
This paper reports a series of refinements to the instrument described in Ref. 1:  instrument stiffness has
been increased to allow testing of specimens with greater rigidity; phase resolution has been increased to
provide higher precision in subresonant tests; and digital data acquisition has been incorporated.

II.  THEORY
Ideally, in order to characterize the constitutive behavior of a material, one applies the input

variable and observes the response of the output variable. However stress is not readily observable; one
measures force or torque. The relationship between stress and torque and between strain and angular
displacement is provided by the solution of a boundary value problem for the specimen geometry in
question. For dynamic torsional experiments, an exact solution exists for the boundary value problem for
a solid rod of circular cross section.  For the case of bending, quasi-static experiments can be analyzed
approximately using the corresponding exact analytical solution for static bending.  At resonances,
damping can be calculated using the method of resonant half-widths. The remainder of the paper will be
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concerned with the torsion experiment, with the understanding that bending experiments can be
performed in a similar manner.
A.  Creep Experiments.
 Creep experiments were conducted by using a step function input to the bipolar amplifier which drives
the coil, to apply a torque constant  in time, to the free end of the specimen.  Shear stress, τ, is calculated

from the torque and specimen geometry.  Shear strain, γ, is calculated from the angular displacement and
specimen geometry. Creep compliance was calculated from the measured torque M, angular displacement
φ, and specimen rod radius r and length L using the quasistatic relation

J(t) = 
φ(t)

πr4

2
ML (1)

B.  Dynamic Experiments.
 At frequencies significantly below that of the specimen’s first torsional resonance, the stiffness

considered as the absolute value of the complex shear modulus G* has an approximate value given by
the quasistatic relation

|G*| = | 
ML

φπr4

2

 |. (2)

Due to dynamic effects, the apparent stiffness changes by 5% at 0.22 of the lowest resonance frequency,
however all results were analyzed dynamically, via Eq. (4).

Damping, the phase δ between stress and strain, in the quasistatic domain (at frequencies well

below any resonance) is approximately equal to the measured phase φ between torque and angular
displacement:

tan δ ≈ tan φ (3)

The phase φ differs from δ by 10% at 0.3 of the lowest resonance frequency; again, results were
analyzed dynamically, via Eq. (4).

At frequencies approaching and including the specimen’s first torsional resonance, the effect of
specimen inertia and magnet inertia becomes important. Stiffness and damping were calculated by
numerical solution of an exact relationship for the torsional rigidity (ratio of torque M* to angular
displacement Φ) of a viscoelastic cylinder of radius R length L, and density ρ with an attached mass of
mass moment of inertia Iat at one end and fixed at the other end 13:

M*

Φ
 = [¤ρπR4][ω2L]

cot Ω*

Ω*
 - Iat ω2  , (4)

where Ω* =  
ρω2L2

KG* , K is a geometrical constant (equal to 1 for a cylindrical specimen with circular

cross section).  Calculations were performed using this exact formulation except for specimens of
moderate to low loss studied via free decay or resonance half width, as discussed below. Inversion of
Eq. 4 was carried out via a numerical procedure based on Newton's method 1. Coupling with flexural
modes has not been a problem. Such coupling would manifest itself as a spurious resonance at
intermediate frequencies below the first torsional mode. Such effects were minimized by making the
specimen and the end attachment as symmetrical as possible.

For materials of comparatively low loss at frequencies corresponding to a resonant torsional or
bending resonant mode of the specimen, damping was calculated using the shape of the frequency
response curve near the resonance (the resonance half-width method):

tan δ ≈ 
1
√3 

∆ω
ωo

, (5)
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where ∆ω is the full width of the resonance curve at half maximum. A related approach using the

width at 1/√2 of maximum is valid within 1% for tan δ ≤ 0.28 17 .
At the higher frequencies some energy is transmitted into the support rod, giving rise to a

parasitic loss. The amount of transmitted energy can be evaluated via the mechanical impedance Z.  For
longitudinal waves, Z is the ratio of driving force to particle velocity 7; for a rod of radius r, density ρ,
and complex Young's modulus E*, Z depends on the cross sectional area.

Z = πr2 ρE*.
The impedance for torsion is the ratio of torque to angular velocity; it depends on the polar moment of
inertia.

Z = ¤πr4 ρG*.  (6)
This is in contrast to the case of plane shear waves in which there is no mismatch in area or moment of
inertia:

Z = ρG* represents the characteristic impedance.
The reflection coefficient, defined as the ratio of stress in the reflected wave to the stress in the incident
wave, is 18

R = 
Z1 -  Z 2
Z1 +  Z 2

 . (7)

The transmission coefficient for power is 18

Tp  = 1 - |R|2 = 
4

[ Z2
Z1

 +
Z1
Z2
]2

 . (8)

The difference in diameter between the specimen and the support rod gives rise to an impedance
mismatch which parasitic loss resulting from transmission of waves into the support. Since in torsion the
impedance goes as the fourth power of diameter, the desired impedance mismatch can be large.  As an
example, consider medium 2, the support rod, to be steel, with G = 78 GPa, ρ = 7.9 g/cm3, r = 6.2

mm, and material 1, a specimen, to be aluminum alloy with G = 27 GPa, ρ = 2.7 g/cm3, r = 0.8 mm.

Then Tp  = 4.7 x 10-3; considering this as a parasitic specific damping or energy ratio Ψp, the parasitic
loss tangent is

tan δp = 
1
2πΨp = 0.75 x 10-3.

Most of the materials studied have been considerably more compliant than aluminum hence would
present less problem of parasitic loss. Moreover use of a tungsten support rod (E = 400 GPa, ρ = 19.3
g/cm3, r = 6.2 mm) further reduces parasitic loss when studying stiff specimens. For measurements of
materials of extremely small damping, a free-free resonance method is recommended, however such
methods are not amenable to static measurements.

III.  PROCEDURES
Determination of angular displacement and of torque
Light from the laser was reflected from the specimen’s mirror to a split-diode silicon light

detector (Centronics Co.). The optical lever approach to measuring angular displacement is time-
honored, effective, and used in a variety of instruments 19 . Use of a laser in the present instrument
allows a small mirror of small inertia to be used. The detector was connected to a differential preamplifier
built into a small circuit box, shown in Fig. 2. The rationale for this arrangement was to avoid cable
capacitance which would introduce unacceptably large phase errors. The detector-preamplifier assembly
was mounted on a small micrometer driven stage which was used for in situ calibration of the detector
system. Calibration was achieved by preparing a plot of output voltage versus micrometer displacement.
A correction curve for amplifier phase shifts at high frequency was obtained by measuring the phase
between torque and angular displacement of a rod of aluminum alloy with known small loss tangent
(type 6061-T6, E = 68.9 GPa, G = 25.9 GPa, tan δ ≈ 3.6 x 10-6) 20 .  The detector provides a linear
voltage response to angular displacement, in contrast to the interferometric approach used earlier in
which the output voltage signal V was V = A sin kΦ + B in which Φ is the angular displacement. Use of
a linear detection scheme centered about zero permits a variety of methods to be used for phase
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determination, as described below. Typical angular displacement was less than 1 mrad, and surface shear
strain less than 10-5.  An increased displacement range for creep can be obtained if the laser beam is
intentionally off center within the linear range at the start of the experiment.

Torque was inferred from the current in the coil as determined from the voltage across a non-
inductive series resistor. Calibration of this relationship was achieved by testing of a standard specimen
of 6061 aluminum alloy, which has been very well characterized. An absolute calibration procedure was
used earlier 1 however it is more cumbersome.

Phase measurement
Procedures were developed to improve the phase resolution of the instrument. In the previous

version of the instrument, the phase difference between the torque and angular displacement signals was
taken from the time delay between the signals as observed on an oscilloscope. This approach provided
sufficient phase resolution to study high loss viscoelastic elastomers. To improve measurement aspects
of phase resolution in the present version, a lock-in amplifier (Ithaco, 2961B) is used for frequencies
between 1 to 10 Hz and 10 kHz. The phase resolution is 0.01°, or 1.8 x 10-4 rad. The lock in amplifier
has a lower frequency limit of 0.5 Hz, and its performance begins to suffer as that limit is approached.
At lower frequencies, a Lissajous figure was examined on a digital oscilloscope or on a computer
(Macintosh IIci with Labview hardware and software) to determine phase. The input channels are 12
bits, so for a full scale signal, the digital limit on phase resolution is [4096]-1 = 2.4 x 10-4 rad. Phase
determination by the method of Lissajous figures can provide high resolution if the figure is expanded;
the method is particularly useful at low frequency 21 . Improvements in mechanical aspects of phase
resolution were achieved by reducing mechanical perturbations. Noise from building vibration was
reduced by a change of environment and by use of additional foam isolation beneath the instrument. Low
frequency noise from air currents was reduced by a baffle around the instrument. The actual phase
resolution in the Lissajous figures was about 0.001 rad; it is limited by residual mechanical
perturbations. The phase φ was extracted from the maximum width A of the elliptic load-deformation plot

of a linearly viscoelastic material by sin φ = A/B with B as the peak-to peak signal level. Use of
Lissajous figures was facilitated by the modified detection scheme which eliminated the DC offset which
was present in the single-element detector used in the interferometric approach.  At specimen resonances
in materials with moderate loss, the method of resonant half-width was used, as in the previous
instrument; this method is very accurate.

Dominant error sources in specimens with moderate damping differ from those which are
important in the high loss materials (tan δ ≈ 1) discussed earlier 1. For high loss materials, the method of
resonance half width cannot be used since the approximate formula fails for such broad resonances;
numerical inversion of the resonance was conducted. The specimen diameter and density must be known
accurately to calculate large tan δ by the inversion approach. For materials with low to moderate loss (tan

δ ≤ 0.1), analysis is simpler since the method of resonance half width can be used near resonance;
moreover that method is insensitive to any uncertainty in specimen diameter or density. Below
resonance, the correction for inertial terms is less sensitive to specimen geometry than in the case of high
loss materials.

Frequency range
Above about 2 kHz it became difficult to pass sufficient current through the Helmholtz coil as a

result of its inductive reactance. This reactance was neutralized with the aid of switched capacitors placed
in series with the coil, with additional capacitors provided for several frequency ranges up to 14 kHz. It
became possible to excite higher harmonics in the torsional resonance spectrum by this approach. The
capacitors did not introduce phase error since the drive current is determined from the voltage across a
resistor, not from the voltage across the coil. In measurements involving higher harmonics, the method
of free-decay of vibration was also used.

Instrument stiffness
It was considered desirable to increase the rigidity of the instrument in order to accommodate

larger diameter specimens which are examined on occasion. For that purpose, the rod which supports the
specimen was changed from an aluminum rod (E = 70 GPa) to a tungsten one (E = 400 GPa). Rods
were 12.7 mm in diameter; the support rod was 310 mm in length, and the portion protruding beyond the
fixture depended on the specimen length; typically 160 mm. For most slender specimens, a stainless steel
support rod was sufficient. Moreover the clamp supporting the specimen rod was replaced with a large
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steel block in which holes were drilled to accept the connecting rods, which were changed from
aluminum to stainless steel. Instrument stiffness was determined with the aid of a large magnet cemented
directly to the support rod to generate torque.

Digital processing
Data were acquired using Labview® software and associated electronics (a multifunction I/O

board and a GPIB instrument controller; National Instruments Inc.) in conjunction with a Macintosh®

IIci computer. The input channels have 12 bit resolution. Creep data were obtained in the form of a
specified number of data points per logarithmic decade. Data were stored in a file for later export into
routines for analysis and graphical presentation. Both the torque and angular displacement signals were
recorded as functions of time. As for dynamic tests, the recording and interpretation of Lissajous figures
was facilitated by storing the data digitally, and displaying a plot of torque vs angular displacement on
the computer. This approach was particularly helpful at low frequencies (below 0.1 Hz) for which the
use of an oscilloscope becomes tedious. The capability for averaging was also incorporated, to reduce
the effect of low frequency noise. Cursors providing a read-out of input and output voltage were
incorporated to aid the experimenter in extracting data in digital form from the Lissajous figure.

IV.  RESULTS
The final instrument stiffness was about 3 x 106 N-mm/rad. This is orders of magnitude greater

than the stiffness of the specimens examined, which were typically 3 mm in diameter, in comparison
with the 12.7 mm diameter support rod. Instrument stiffness therefore contributed negligible error to the
measured stiffness of such specimens. The dominant source of error in specimen stiffness is the
measurement of the specimen diameter, since its structural rigidity is proportional to the fourth power of
the diameter. Such errors are not associated with the instrument itself.

An experimental evaluation of parasitic loss was performed by measuring the damping of a low-
loss material. A specimen of type 6061-T6 aluminum alloy, 1.5 mm in diameter, was examined. This
specimen was cemented to a steel support rod. The tan δ obtained at resonance (1190 Hz) by the method

of resonant half-width, was 7.8 x 10-4. The value of tan δ obtained by a free-free resonant procedure 20

was 3.6 x 10-6. The value 7.8 x 10-4 is in reasonable agreement with the parasitic loss calculated from
mechanical impedance above. Since most materials tested were more compliant than aluminum, this
value may therefore be considered an upper bound on the spurious loss due to transmission of energy
into the support. This parasitic loss is much smaller than the smallest damping actually measured with the
apparatus.  A tungsten support rod is available to provide additional mechanical impedance mismatch in
order to reduce parasitic loss when studying stiff specimens. Therefore the above aluminum-steel
example may be considered a worst-case scenario for parasitic damping.

A viscoelastic damping spectrum for a cast eutectic indium-tin alloy at 25.9 ± 0.3°C is shown in
Fig. 3. Surface shear strain was 1.6 x 10 -5 or less at 100 Hz.  This material was chosen for illustrative
purposes since it exhibits a substantial range of tan δ over the frequency range studied, and tan δ ∝ ν-n

with n as a constant is expected over a substantial range of frequency. Error estimates for tan δ at the
higher sub-resonant frequencies were comparable to or less than the size of the data points. Combined
creep and dynamic results cover about 10.4 decades of effective time and frequency. The creep
compliance followed a power law in time over the range examined, J(t) ∝ tn, with n = 0.269. For a

power law transient response, the loss angle is δ = ¤nπ, so that for the very low frequency regime in

indium-tin, the loss inferred from creep is tan δ = 0.42, a figure which compares favorably with the

results of direct measurements of tan δ at low frequency. As for the dynamic behavior, the two lowest
resonances were observed with sufficient amplitude to infer damping. There are an unlimited number of
higher resonances, but they occur at progressively smaller amplitudes (as 1/ν2 if the end mass is
negligible; faster otherwise), which limits the signal to noise ratio hence the attainable precision.

There are no standard materials for viscoelasticity studies, since the physical processes which
give rise to viscoelastic behavior tend to depend on specimen preparation methods as well as on
environmental variables such as temperature and humidity. Therefore detailed quantitative comparisons
with other results cannot be made. Nevertheless study of a low-loss aluminum alloy as a limiting case
indicates parasitic loss to be sufficiently small to permit study of slender specimens of materials of
moderate loss (0.008 ≤ tan δ ≤ 0.2) as well as high loss (tan δ ≈ 1).
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For comparison, a Debye peak based on a three-element viscoelastic model and preliminary
results from resonant ultrasound spectroscopy are also shown.


