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Abstract

Material microstructures are presented which can exhibit coefficients of thermal expansion

larger than that of either constituent.

Thermal expansion of materials is of considerable practical interest since materials in

service may experience a considerable range of operating temperature. Materials with

microstructure, including composites, honeycombs, and foams (which are composites with one

void phase) are finding increasing application for many purposes. It is therefore of interest to

explore the range of thermal expansion coefficient attainable in materials with microstructure.

The constitutive equation for a linear isotropic thermoelastic continuum is [1]:

εij = 
1  +  ν

E  σij - [ 
ν
E σii  - α∆T]δij , (1)

in which εij is strain, σij is stress, ν is Poisson's ratio, E is Young's modulus, α is the thermal

expansion coefficient, δij is Kronecker's delta, and the usual index notation is used.

Thermal expansion of crystalline solids is considered to arise from the anharmonicity of the

interatomic potential.  Thermal expansion coefficients for solids are on the order of 3 x 10-6/°C for

ceramics, 10-5/°C for metals, and 10-4/°C for polymers [2]; many specific values are given in

reference [3]. Thermal expansion of foams was discussed briefly by Gibson and Ashby [2] who

pointed out that for a foam viewed as a framework (of homogeneous ribs), the thermal expansion

coefficient is the same as the solid from which it is made. An exception is a closed cell foam of

very small solid volume fraction, for which thermal expansion is enhanced by the expansion of the

gas within the cells [2].  An upper bound for this effect can be estimated as follows. If the foam is

very compliant, expansion of the gas occurs at approximately constant pressure. Considering the

ideal gas law PV = nRT, the expansion of such a compliant foam at room temperature (T = 300 K)

can be no more than α = 1.1 x 10-3/°C, greater than that of a solid polymer.

For arbitrary two-phase composite materials, bounds have been developed for the thermal

expansion coefficient α of the composite in terms of that of each constituent [4,5]; the upper bound

is a rule of mixtures. In deriving these bounds it was assumed that there are only two phases, and

there is no empty space in the composite. In the present work, it is shown that if one relaxes the
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assumption of no empty space, it is possible to generate cellular micro-structures which exhibit a

thermal expansion coefficient much larger than that of either constituent.

Consider a cellular solid consisting of bi-layer ribs. The rib element in the cellular solid

consists of a laminate of two layers of differing thermal expansion coefficient α. The layers have

Young's moduli E1 and E2, Poisson's ratio ν1 and ν2 ; thermal expansion coefficient α1 and α2;

and thicknesses h1 and h2. The curvature κ (the inverse of the radius of curvature ρ) of a thin bi-

layer elastic beam is given in terms of the temperature change ∆T  by Timoshenko [6], neglecting

end effects [7].

The curvature may be written

κ = 6(α2 - α1)∆T 
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The curvature can be made arbitrarily large by making the strip thickness h small.  The ratio of

Young's moduli has little effect on the curvature [6].

We determine the thermal expansion coefficient of cellular solids with two-layer rib

elements. Consider first the deformations and strains caused by rib curvature due to strain. The
transverse displacement δ at the midpoint of an initially straight rib of length l is [6]

δ = 
κl2

8  . (3)

Cellular solids which exhibit global thermal expansion due to such transverse rib displacements

must have an unusual connectivity, such as that shown in Fig. 1. It is easier to make use of

longitudinal displacement of rib elements as determined as follows. Referring to Fig. 2, consider
now a curved rib element of arc length larc, radius of curvature r, and included angle θ, in radians.

The rib length is given by

l = larc 
2

θ
 sin 

θ
2 . (4)

The strain of a unit cell due to end to end length changes in the rib is

ε = 
dl
l

 . (5)

The effect of a curvature increment dκ due to bending is

ε = [
1
2 ctn 

θ
2  -  

1

θ
 ] larcdκ. (6)
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Eq. 2 gives the curvature of a straight rib, or the increment in curvature of an initially curved rib.

Eq. 6 shows that there must be some initial curvature or no finite length change occurs. Cellular

solids which expand due to longitudinal displacement by bending of ribs with initial curvature are

shown in Fig. 3.

The thermal expansion coefficient of the cellular solid structure is α = ε/∆T (at constant stress, see

Eq. 1), so

α = 
larc

(h1+ h2)  
6(α2  -  α1)(1 + 

h1
h2

)2

3((1 + 
h1
h2

)2)  +  (1  +  
h1
h2

 
E1
E2

 )  ( (  
h1
h2

)2  +  
h2
h1

E2
E1

)
 [

1
2 ctn 

θ
2  -  

1

θ
 ] (7)

The ratio of rib arc length to rib total thickness can be made arbitrarily large, by making the ribs

very slender. The initial curvature of the ribs, as quantified by the included angle θ, should also be

made large in order to maximize the magnitude of α given by Eq. 7 (Fig. 4). The thermal

expansion coefficient of the cellular solid structure is therefore unbounded. It can be made much

larger in magnitude than the thermal expansion coefficient of either solid constituent.

The sign of the thermal expansion coefficient of the cellular solid is governed by the

placement of the constituents within each rib. Referring to Fig. 3, if the constituent with the higher

thermal expansion coefficient is on its concave side, an increase in temperature will cause the rib to

straighten, giving rise to a positive thermal expansion coefficient for the cellular solid. Conversely,

if the constituent with the higher thermal expansion coefficient is on its convex side, an increase in

temperature will cause the rib to curve more and become shorter, giving rise to a negative thermal

expansion coefficient for the cellular solid. The structure shown in Fig. 3 has two dimensional

cubic symmetry giving rise to anisotropic elasticity but isotropic thermal expansion. Hexagonal

structures which are elastically isotropic in plane are also possible.

The examples presented are two-dimensional honeycombs. They could be produced by a

co-extrusion process, by progressive lamination, or by lithography. One may also envisage three-

dimensional cellular solids, or foams, containing bi-layer ribs, which may be sintered together.

Materials based on polymer bi-layers can deliver higher thermal expansion than those based on

metallic bi-layers.

These structures provide a further illustration of the importance of void space in

determining physical properties. Inclusion of void space permits one to substantially exceed

bounds for thermal expansion developed under the assumption of no void space. Control of the

shape of void space has led to materials with a negative Poisson's ratio [8] and lightweight

hierarchical materials with high ratios of strength to weight [9]. More developments in materials

with unusual or extreme properties are anticipated.
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To conclude, arbitrarily high values of thermal expansion can be attained by preparing

cellular solids with ribs consisting of a bi-layer containing materials of two different expansion

coefficients.
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Figures

1 Cellular solid which undergoes thermal expansion via lateral bending displacement of ribs.

2 Rib element geometry with initial curvature.
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3 Cellular solid with curved ribs. It undergoes thermal expansion via longitudinal bending

displacement of ribs.
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4 Normalized thermal expansion 
α

α2 - α1
 of cellular solid vs. rib curve angle θ (in radians)

and rib aspect ratio  
larc
h   for h1 = h2 = h and E1 = E2.

  


