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Compressive properties of elastic cellular solids are studied via experiments upon foam and 
upon single-cell models. Open-cell foam exhibits a monotonic stress-strain relation with a 
plateau region; deformation is localized in transverse bands. Single-cell models exhibit a 
force-deformation relation which is not monotonic. In view of recent concepts of the con- 
tinuum theory of elasticity, the banding instability of the foam in compression is considered to 
be a consequence of the non-monotonic relation between force and deformation of the single 
cell. 

1. I n t r o d u c t i o n  
Cellular solids are currently used in many structural 
applications. It is therefore of interest to understand as 
fully as possible the physical mechanisms for deforma- 
tion and damage formation. With sufficient under- 
standing it will be possible to develop new cellular 
solids with superior resistance to damage. 

Elastomeric foams are known to exhibit several 
regions of behaviour in simple uniaxial compression: 
(i) an approximately linear behaviour for strains less 
than about 0.05, (ii) a plateau region in which strain 
increases at constant or nearly constant stress, and 
(iii) a densification region of the stress-strain curve in 
which its slope increases markedly with strain. Linear 
elasticity arises from bending of the cell ribs, the 
plateau arises from their elastic buckling, and den- 
sification arises from contact between ribs [1]. Simple 
analytical models based on elastic buckling of the ribs 
have been used in an effort to predict the behaviour of 
foams. They indicate a value of strain at which the 
transition between linear elasticity and plateau re- 
gions occurs at about 0.05, which corresponds closely 
with experiment [1]. 

Ductile foams such as those made of metals also 
exhibit regions of linear elasticity, plateau, and den- 
sification. In ductile foams, the plateau region is asso- 
ciated with plastic buckling of cell ribs rather than 
elastic buckling. Moreover, in elastomeric foams, rib 
buckling is fully reversible (though accompanied by 
hysteresis), in ductile foams, rib buckling is associated 
with permanent microdamage. 

The purpose of this paper is to advance understand- 
ing of compressive collapse in cellular solids with the 
aid of the theory of stability of elastic continua. Since 
elastomeric foams are more representative of elastic 
continua than ductile foams, consideration is given to 
rib microbuckling of elastomeric foams and its 

relation to elastic-stability considerations of the foam 
as a whole. Ductile foams, which are more important 
in applications requiring the support of relatively large 
stresses, will be considered in a later study. 

2. Mater ia l s  and m e t h o d s  
Scott Industrial Foam, which is a reticulated, open- 
cell polyurethane foam, was examined experimentally 
to determine its mechanical properties. The pore size 
was 1.3 mm (20 pores per inch). Macroscopic models 
of individual cells were also prepared from rods of 
polyurethane rubber, 6.1 mm in diameter. Open-cell 
models in the shape of a tetrakaidecahedron (with ribs 
25 mm long) and a regular octahedron (with ribs 
50 mm long) were made. The tetrakaidecahedron has 
six square faces and eight regular hexagonal faces 
(Fig. 1); it is considered representative of typical cells 
in foams. 

Mechanical testing was conducted using a servohy- 
draulic testing machine (Instron, Canton, MA, model 
1321) at room temperature (22~ 55% relative 
humidity). The specimens were mounted between rigid 
platens and held by friction in compression tests. 
Some tests of compression and tension were done with 
the specimen cemented to the platens with cyanoacryl- 
ate adhesive. Several trials were also conducted in 
which compression specimens were lubricated with a 
silicone-spray lubricant. Long blocks of foam in com- 
pression tests were restrained laterally on one or two 
surfaces to prevent macroscopic buckling. Some tor- 
sion tests were made upon square-cross-section bars 
as well; however, the interpretation of such tests is less 
simple than for compression as a result of the in- 
homogeneous strain field in torsion of a bar. The foam 
was examined visually and under low-power magnific- 
ation during deformation. The tetrakaidecahedron 
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Figure 1 Tetrakaidecahedron cell model. 

model was loaded in compression upon a pair of 
square faces and a pair of hexagonal faces in separate 
tests. The octahedron model was loaded upon a pair 
of triangular faces and a pair of vertices in separate 
tests. Triangular waveforms at slow deformation rates 
(0.033 to 0.0033 cycle sec-1) in displacement control 
were used. The strains presented in the graphs were 
calculated from the platen-displacement signal. 

3. Exper imenta l  results 
Uniaxial compression of blocks of Scott Industrial 
Foam of different size and shape resulted in the 
stress-strain curves shown in Fig. 2. Observe that the 

curves are monotonic. The results for a large block 
longer than its width agree with those of Choi and 
Lakes [2]. Further experiments upon compression 
specimens which were lubricated or cemented to the 
platens disclosed similar behaviour. The overall shape 
of the curves was insensitive to changes in strain rate. 
A small block, also longer than its width behaved 
similarly to the large block, as shown in Fig. 2. 

Bands of localized deformation were observed visu- 
ally, and they were transverse to the direction of 
compression. The bands contained cells which were 
highly compressed to the point of contact between 
adjacent ribs. The bands were of low contrast. The 
bands began to form when the gauge length of the 
specimen reached a strain of about 0.1, and they were 
very evident at a strain of 0.2. Further compression 
within the plateau region of strain resulted in an 
increase in the number of bands, until they occupied 
most of the specimen; macroscopic densification then 
occurred. The band thickness depended on the cell 
size; the bands were several cells thick in foam of cell 
size 0.4 mm and in foam of cell size 1.2 mm. Banding 
localization is known to occur in the tensile loading of 
polymers and metals beyond the yield point, and 
in plastic deformation of ductile honeycombs [3]. In 
the case of the present polymer foam, the banding 
localization was completely reversible, i.e. the bands 
disappeared upon the removal of the load. 

The foams exhibited considerable hysteresis, both in 
loading from zero into the densification region and in 
loading over a restricted range of deformation. In the 
latter case, a measure, A, of hysteresis loss was defined 
as the ratio of the hysteresis-loop width in load to the 
total excursion in load. In linear viscoelasticity the 
hysteresis-loop is elliptical and the above ratio is sin 8 
in which 8 is the loss angle. For strain excursions of 
0.09 peak-to-peak, A = 0.11 for excursions about zero, 
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Figure 2 Experimental engineering stress versus engineering strain for monotonic loading in compression for Scott Industrial Foam 
(20 pore inch - 1): (  9  a block 52 by 53 by 121 m m  long, (+)  a block 15 by 15 by 19 mm long, and (x) a stubby block 52 by 53 by 19 mm  long. 
The inset shows the stress-strain curves on a wider strain scale and includes hysteresis during loading and unloading; the same symbols are 
used as in the large graph. 
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Figure 3 Experimental axial force versus deformation (calculated as the change in cell width divided by the original cell width) for a 
tetrakaidecahedral cell model with ribs 25 mm long and 6 mm in diameter. The inset shows an engineering stress versus strain (AL/L) curve 
for a single rib. The plateau in compression corresponds to buckling and postbuckling. 

A = 0.24 in the plateau region (a = 0.2 to 0.43), and 
A = 0.19 in the densification region (~ = 0.73). 

The compressive behaviour of a stubby block, shor- 
ter in the load direction than its width, differed from 
the above in that there was essentially no plateau 
region, as shown in Fig. 2. The behaviour of a thin 
layer of foam, about two cells thick, cemented to rigid 
platens was similar to that of the stubby block. 

The compressive behaviour of the tetrakaidecahe- 
dron cell model was not monotonic, as shown in 
Fig. 3, in contrast to the behaviour of the foam as a 
whole. The load-deformat ion curve displayed a nega- 
tive slope over a range of strain; outside this range the 
slope was positive. The curve had this shape regardless 
of whether the compression load was applied to the 
square faces or to the hexagonal faces. An octahedron 
cell model also exhibited a non-monotonic load-  
deformation curve of similar shape to the above. The 
tetrakaidecahedron-single-cell model behaved sim- 
ilarly to the foam in that the region of approximately 
linear behaviour was of similar extent; densification 
began to occur at about  the same strain, and rib 
alignment in tension caused a similar nonlinearity. 
The principal difference is the presence or failure of 
monotonicity in the plateau region. During compres- 
sion, the tetrakaidecahedron cell model first bulged 
outward in the transverse directions, then assumed a 
biconcave shape, then the ribs came in contact 
resulting in a rapid increase in stress. 

Torsion tests upon a square-cross-section-foam spe- 
cimen disclosed load-deformat ion curves with slopes 
which varied smoothly by a small amount. There were 
no abrupt changes in slope nor were there plateau 
regions. Torsion of a specimen under precompression 
of 24 % or tension of 37 % axial strain had no dramatic 
effect on the shape of the load-deformat ion curve. No 
localization in the form of bands was observed in any 
torsion test. 

As for foam materials with negative Poisson's ratios 
[4, 5], prior study disclosed the absence of a plateau 
region in the stress-strain curves. In the present study 
compressed specimens were examined for a banding 
instability, but none was found. 

4. Considerations of stabil i ty in elastic 
continua 

The experimental observation of band formation in 
the compression of foams is considered to be a mani- 
festation of elastic instability. To aid in the interpreta- 
tion of the results, salient aspects of the theory of 
stability in elastic continua are presented. 

4.1.  Linear  e las t ic i ty  
There are several ranges of elastic constants which are 
associated with stability on various levels. Consider 
first the case of linear isotropic elasticity. The strain 
energy is positive definite if and only if the shear 
modulus, G, and Poisson's ratio, v, satisfy 

G > 0 ,  - l < v < 0 . 5  (1) 

or equivalently, G > 0 and 3~, + 2G > 0 in which )~ 
and G are the Lam6 constants. 

Materials which obey these relations give rise to 
unique solutions of boundary-value problems in 
which either surface traction or surface displacements 
are specified. Moreover, such materials are stable to 
small macroscopic perturbations. 

Displacement-type boundary-value problems have 
unique solutions if [6] 

G > 0 ,  - oo < v < 0 . 5  and 1 < v <  oo (2) 

This range is considerably less restrictive than Equa- 
tion 1. Moreover, other ranges for uniqueness can be 
obtained for specific boundary shapes. 
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The conditions for strong ellipticity are [7] 

G > 0, 2 + 2G > 0 (3) 

If strong ellipticity is violated, the material may ex- 
hibit an instability associated with the formation of 
bands of inhomogeneous deformation [7]. The phys- 
ical significance of the ;', + 2G > 0 condition of strong 
ellipticity is that the stiffness is positive for axial 
compression or extension under lateral constraint, as 
is the speed of longitudinal waves. Equation 3 is equi- 
valent [8] to 

E(I - v) (1 _-;~_ 
G > 0 ,  (1 + v ) ( 1 - 2 v )  - 2G( _ ) > 0  (4) 

in which E is Young's modulus, or 

G > 0 a n d v < 0 . 5 o r v >  1 (5) 

Since E = 2G(I + v), the range of E for strong ellip- 
t icity is - :c < E < 3c. As for the bulk modulus, 

2G(I + v) 
B = - -  (6) 

3(1 - 2v) 

or equivalently B = 2 + 2G/3, so that for strong ellip- 
ticity - 4 G / 3  < B < ,~. However, as implied by 
Equation 1, E, G; and B must be positive for positive 
definiteness and for the material to be globally stable 
under small deformation. 

In summary, the conditions for global stability of an 
elastic solid and local stability (with respect to the 
formation of bands) are not identical. 

4.2. Non l inea r  e las t ic i ty  
In a one-dimensional nonlinearly elastic bar the con- 
dition for strong ellipticity is that 

d2W 
-d.2~- > 0 (7) 

in which the material in question has a strain-energy 
density, W(2), where ~, is the stretch ratio (equal to 
1 + ~:, with e the engineering strain). This relation is 
equivalent to da/d2 > 0 with a as the Piola (engineer- 
ing) stress; that is, the stress- strain curve is 
monotonically increasing. 

Failure of ellipticity may occur in the form of a 
change of sign in the slope of the stress-strain curve; 
the slope may become negative over an interval of 
strain. This was predicted [9] to result in localized 
deformation in the form of bands of material under 
high strain. Another prediction of the theory is that 
while the local (microscopic) stress strain curve has 
regions of negative slope, the macroscopic 
load -elongation response observed will always have a 
non-negative slope. 

In three dimensions, the strain-energy density, 
W(2~, ;L z, 23), depends nonlinearly on the three princi- 
pal stretch ratios ;L 1, 22, 23. The necessary and suffic- 
ient conditions of strong ellipticity (hence stability 
with respect to localized-strain band formation) are 
rather complicated [10]; see also [7] for a two-dimen- 
sional analysis. For the special case of uniaxial stress, 
along the Z 1 direction, the lateral stretches are equal: 
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22(Z~) = 230- a). The three-dimensional conditions for 
strong elliptici~ reduce to 

> 0 (8) (2,2 --z~) 
~2W O,2W 

- -  > o, ~2~ > o, ~2-~ > 0 (9) 
O2W 
~2 2 

(10) 

in which a I = ~W/~c21 is the stress in the axial direc- 
tion. We remark that Equations 9 are analogous to 
Equation 7 in one dimension. Experimentally, Equa- 
tions 9 correspond to a condition of compression under 
a restriction of lateral movement as can be achieved by 
compression within a lubricated tube, or compression 
of a short block between rough platens. 

5. Analysis of the experiment 
The bands which develop in compressed foam are 
evidence of failure of ellipticity of the material viewed 
as a continuum. The non-monotonic, compressive- 
load-deformation behaviour of single-cell models is 
regarded as a causal mechanism for the macroscopic 
behaviour of the foam in the plateau region and for the 
banding instability. 

5.1. Deta i led  ana lys is  for  one  d i m e n s i o n  
To understand the formation of bands, consider a one- 
dimensional nonlinear elastic bar with strain-energy 
density, W(2), in which 2 is the stretch ratio, k = 1 + c 
with c the engineering strain. The stress in the bar is 
a = d W(2)/d2. Suppose that on the continuum level, 
the stress strain curve (equivalent to a stress- stretch 
curve following a shift on the abscissa) is as shown in 
Fig. 4. Equilibrium requires a = constant along the 
bar. It can be shown [9] that the values of the stretch 
in an interval 2 M < 2 < k m (where d z W / d 2  2 < 0) are 
unstable, hence they are physically unobservable. For 
values of applied stress in the range a~ < a < am 
(between the local minimum and maximum of the 
stress-stretch curve in Fig. 4), there are two possible 
values o fk  corresponding to the same a, excluding the 
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Figure 4 Schemat ic  d i ag ram of a non-monotoni t ; ,  stress s t ra in  
response. The symbols  are explained in the text. 



unstable middle region; these may be called X+ and 
X . For  values of stress outside that interval there is a 
unique stretch corresponding to a uniform-strain solu- 
tion~ In the theory of nonlinear elasticity one can 
model phase changes by allowing strain discontinui- 
ties while maintaining continuous displacements 
[7, 9, 11, 12]. In the present setting it is possible to 
have a discontinuity in strain. The regions of different 
strain (or stretch) correspond to the bands of localized 
compression observed in the experiments. The stretch 
is discontinuous along the bar, alternating between 
the values )~+ and X_. The average stretch ;L.vg must 
obey the relation Z_ < Zavg < X+ SO there is a con- 
straint on the amount of material in each kind of 
region. 

Now consider the shape of the macroscopic response 
curve. Under the above assumptions, the macroscopic 
response (in which stress versus average stretch is 
observed) is not unique but can take the form of any 
curve within CBDE in Fig. 4 [12]. This non-unique- 
ness may be removed by making additional assum p - 
tions. For example, assume that the bar undergoes 
deformations which minimize its total potential en- 
ergy [9, 11] while satisfying the boundary conditions; 
then the macroscopic response exhibits a flat plateau 
region, line q -q  in Fig. 4, at the Maxwell stress [9]. 
This stress is determined by requiring that the areas 
between the macroscopic and microscopic response 
are equal. This response is reversible, and there is no 
hysteresis. The macroscopic response coincides with 
the microscopic stress-stretch curve over the mono- 
tonically increasing portions FEq and qBA in Fig. 4. 
In the context of the cellular solids examined here, 
the theory predicts that a non-monotonic microscopic 
response (or a single-cell response since there is 
not a continuum) gives rise to a monotonically 
nondecreasing macroscopic response with a plateau. 

A nonzero slope in the plateau region (such as is 
observed experimentally) is predicted theoretically 
under the assumption of inhomogeneity in the bar 
[11], so that the microscopic response shown in Fig. 4 
differs in its details from point to point in the bar but 
the curve always has the same shape. In the foams this 
inhomogeneity is associated with small density vari- 
ations throughout the foam, and variations in the 
buckling loads of cells depending on their geometry 
and orientation. 

The hysteresis observed in the experiments may be 
explained in part by assuming an energy cost associ- 
ated with movement of the edges of bands [12]. 
Physically, a portion of this energy dissipation can be 
considered to arise from the friction between cell ribs 
during collapse of the cells. Such analysis does not 
account for the hysteresis which is observed in regions 
other than the plateau region. A more complete ana- 
lysis would incorporate the viscoelasticity of the foam 
material. 

The width of the bands was observed to depend on 
the cell size. However, the classical theory of elasticity 
has no characteristic length scale and so cannot ac- 
count for such effects. Length scales can be incorpor- 
ated via Cosserat elasticity or via theories which 
incorporate strain gradients [ 13-15]. 

It is noteworthy that this analysis predicts a macro- 
scopic response to be caused by a markedly different 
microscopic response (in a continuum sense) which 
corresponds to the experimentally observed behaviour 
of a physical single-foam-cell model. 

5.2. Analysis for three dimensions 
The experiments were made on three-dimensional 
specimens. Analysis of the three-dimensional situa{ion 
is therefore called for. In the uniaxial-stress com- 
pression test of an isotropic material with a positive 
Poisson's ratio X= = X3 > X~ and the applied , com- 
pressive stress cr I < 0 so that Equation 10 is always 
true. Since the lateral surfaces in this experiment were 
free, ~2 = ~W(X1, X/(X0, X3(Z1))/~Z2 = 0, and sim- 
ilarly for cy 3. Differentiating with respect to ~1 

~Z w (~2 W ~2 W ~ OX2 
axial ,  - \ + e .,az3/  (11) 

We also have c~ 1 = a W(Za, X2(XO, X3(XI))/OX~. Differ- 
entiating with respect to Z 1 

8o-2(X,) 82W 2/~2W ~2W_~ ( 9 2 
ex ,  - \ axl + ax2ax3/ \ax, )  

(12) 

We used the experimental results of Choi and Lakes 
[2] for Poisson's ratio versus strain to generate a plot 
of Xz(Z1) against X1. The curve attained a relative 
maximum at Z 1 ~ 0.85, at which X 2 ~ 1.03 and 
8 ~ , 2 / ~ X  1 = 0. At this point in (X1, X2, Z3) space, assum- 
ing 82 m / o x  2 ~, 0 (otherwise Equation 9 fails), Equa- 
tion 11 gives ~2W/aXtaX2 = 0 and dcyl(X1)/dX ~ > 0. 
Then Equation 10 reduces to 

(~1 dcy 1 8 2 W 
+ > o (13) 

(Z1 - -  )~2) dZ1 ~X~ 

The first term is negative. A perfectly flat plateau 
corresponds to dol /dX 1 = 0 and therefore to failure of 
ellipticity. Ellipticity may also fail in the presence of a 
sufficiently small but positive slope in the plateau 
region, depending on the value of ~2 W/~X~ in contrast 
to the conclusions from the one-dimensional analysis; 
however, we do not have an experimental value for 
this derivative. 

5.3. Discussion 
Open-cell foam exhibits a monotonic stress-strain 
relation with a plateau region; deformation is local- 
ized in transverse bands. Single-cell models exhibit a 
force-deformation relation which is not monotonic. 
The difference between the single-cell response and the 
continuum response of foam is understood in terms of 
a stability analysis of the foam considered as an elastic 
continuum. A related analysis of the localization of 
strain in porous media has been conducted [16]. The 
present study, however, presents a non-monotonic 
force-deformation relation for the single cell as an 
experimentally evaluated causal mechanism for the 
overall foam behaviour. 
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6. Conclusions 
1. Open-cell foam exhibits a monotonic 

stress-strain relation with a plateau region; deforma- 
tion is localized in transverse bands of material under 
higher compressive strain. 

2. Single-cell models exhibit a force-deformation 
relation which is not monotonic in compression. 

3. The behaviour of the single-cell models is viewed 
as the cause of the banding localization and the 
plateau effect. 
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