Given: $\mathrm{e}_{\mathrm{rr}}=\partial \mathrm{u}_{\mathrm{r}} / \partial \mathrm{r} ; \mathrm{e}_{\phi \phi}=\left(\partial \mathrm{u}_{\phi} / \partial \phi+\mathrm{u}_{\mathrm{r}}\right) / \mathrm{r} ; \mathrm{e}_{\mathrm{zz}}=\partial \mathrm{u}_{\mathrm{z}} / \partial \mathrm{z} ; \mathrm{e}_{\phi \mathrm{z}}=\left[\partial \mathrm{u}_{\phi} / \partial \mathrm{z}+(1 / \mathrm{r}) \partial \mathrm{u}_{\mathrm{z}} / \partial \phi\right] / 2 \mathrm{e}_{\mathrm{zr}}=\left[\partial \mathrm{u}_{\mathrm{z}} / \partial \mathrm{r}+\partial \mathrm{u}_{\mathrm{r}} / \partial \mathrm{z}\right] / 2$; $\mathrm{e}_{\mathrm{r} \phi}=\left[\partial \mathrm{u}_{\phi} / \partial \mathrm{r}+(1 / \mathrm{r}) \partial \mathrm{u}_{\mathrm{r}} / \partial \phi-\mathrm{u}_{\phi} / \mathrm{r}\right] / 2, \sigma_{\mathrm{ij}, \mathrm{j}}+\mathrm{F}_{\mathrm{i}}=\rho \mathrm{a}_{\mathrm{i}} ; \sigma=\mathrm{E} \varepsilon ; \sin (\theta \pm \varphi)=\sin \theta \cos \varphi \pm \cos \theta \sin \varphi . \mathrm{J}^{*}=$ 1/E*.
$J^{\prime \prime}(\omega)=\frac{2 \omega}{\pi}\left[\wp \int_{0}^{\infty} \frac{\mathrm{J}^{\prime}(\varpi)-\mathrm{J}^{\prime}(\infty)}{\varpi^{2}-\omega^{2}} d \sigma\right] \quad \mathrm{J}^{\prime}(\omega)-\mathrm{J}^{\prime}(\infty)=\frac{2}{\pi}\left[\wp \int_{0}^{\infty} \frac{\sigma \mathrm{J}^{\prime \prime}(\varpi)}{\omega^{2}-\omega^{2}} d \omega\right], \sigma(t)=\int_{0}^{\mathrm{t}} \mathrm{E}(\mathrm{t}-\tau) \frac{\mathrm{d} \varepsilon(\tau)}{d \tau} d \tau$
$\boldsymbol{L}[f(t)] \equiv \mathrm{F}(\mathrm{s})=\int_{0}^{\infty} \mathrm{f}(\mathrm{t})-\mathrm{e}^{-\mathrm{st}} \mathrm{dt}, v=\frac{3 \mathrm{~B}-2 \mathrm{G}}{6 \mathrm{~B}+2 \mathrm{G}}=\frac{1}{2}-\frac{\mathrm{E}}{6 \mathrm{~B}}, \mathrm{E}=2 \mathrm{G}[1+\mathrm{v}], \mathrm{x}(\mathrm{t}) \approx \mathrm{x}_{0} \mathrm{e}^{-(\omega \mathrm{t} / 2) \tan \delta} \sin \omega \mathrm{t} . \boldsymbol{\boldsymbol { L }}\left[\frac{\mathrm{df}(\mathrm{t})}{\mathrm{dt}}\right]=\mathrm{s} \boldsymbol{\boldsymbol { L }}[\mathrm{f}(\mathrm{t})]-\mathrm{f}(0), \mathrm{E}=2 \mathrm{G}(1+v)$ $\int \frac{\mathrm{x}}{\left(\mathrm{x}^{2}-\mathrm{a}^{2}\right)^{2}} \mathrm{dx}=-\frac{1}{2\left(\mathrm{x}^{2}-\mathrm{a}^{2}\right)} . \operatorname{ctn} \mathrm{x} \cong \operatorname{ctn}[\pi / 2]+\left[-\csc ^{2}(\pi / 2)\right][\mathrm{x}-\pi / 2]+\ldots \quad \boldsymbol{L}\left[\mathrm{e}^{-\mathrm{at}}\right]=\frac{1}{\mathrm{~s}+\mathrm{a}}, \boldsymbol{L}[1]=\frac{1}{\mathrm{~s}}, \quad \boldsymbol{L}[\boldsymbol{H}(\mathrm{t})]=\frac{1}{\mathrm{~s}}$,
$\boldsymbol{L}[\mathrm{t}]=\frac{1}{\mathrm{~s}^{2}}, \boldsymbol{L}[\boldsymbol{H}(\mathrm{t}-\mathrm{a})]=\mathrm{e}^{-\mathrm{as} / \mathrm{s}}, \quad \boldsymbol{L}[\delta(\mathrm{t}-\mathrm{a})]=\mathrm{e}^{-\mathrm{as}}, \quad \boldsymbol{L}\left[\mathrm{t}^{\mathrm{n}} \mathrm{e}^{-\mathrm{at}}\right]=\frac{\mathrm{n}!}{(\mathrm{s}+\mathrm{a})^{\mathrm{n}+1}}, \quad \boldsymbol{L}\left[\frac{\mathrm{t}^{\mathrm{n}-1} \mathrm{e}^{\mathrm{at}}}{(\mathrm{n}-1)!}\right]=\frac{1}{(\mathrm{~s}-\mathrm{a})^{\mathrm{n}}} \quad, \mathrm{R}=1.98 \mathrm{cal} / \mathrm{moleK}$
$\boldsymbol{L}\left[\int^{\mathrm{t}} \mathrm{f}(\mathrm{t}-\xi) \mathrm{g}(\xi) \mathrm{d} \xi\right]=\boldsymbol{L}[\mathrm{f}(\mathrm{t})] \boldsymbol{L}[\mathrm{g}(\mathrm{t})], \boldsymbol{L}\left[\sin (\mathrm{at}) \mathrm{e}^{-\mathrm{bt}}\right]=\frac{\mathrm{a}}{\left[(\mathrm{s}+\mathrm{b})^{2}+\mathrm{a}^{2}\right]}, \boldsymbol{L}\left[\frac{\left[\mathrm{be}{ }^{\mathrm{bt}}-\mathrm{ae}^{\mathrm{at}]}\right.}{(\mathrm{b}-\mathrm{a})}\right]=\frac{\mathrm{s}}{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}$ for $\mathrm{a} \neq \mathrm{b}, \ln \frac{\boldsymbol{v}_{2}}{\boldsymbol{v}_{1}}=\frac{\mathrm{U}}{\mathrm{R}}\left\{\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right\}$.
0

Solve four problems only and state which four. Show all logic and state assumptions!!
$\underline{\mathbf{1}}$ (25 pts) Define the following. One sentence or a diagram or an equation should suffice.
(a) attenuation
(e) stretched exponential
(b) $\tan \delta$
(f) Boltzmann superposition principle
(c) resonance
(g) spectrum of relaxation times
(d) shift factor
(h) Debye peak
$\underline{\mathbf{2}}$ (a) (10 pts) Show that for a linearly viscoelastic material, $J^{\prime}=\frac{1}{E^{\prime}} \frac{1}{1+\tan ^{2} \delta}$
(b) (10 pts) What is the physical interpretation of $\frac{1}{\mathbf{J}^{\prime}}>\mathrm{E}^{\prime}$ in the context of a stress-strain diagram?
(c) (5 pts) How are J^{\prime} and E^{\prime} related for an elastic material?
$\underline{3}$ (a) (5 pts) Draw the stress strain curve for a linearly viscoelastic solid under sinusoidal strain $\varepsilon(t)=B \sin \omega t$.
(b) (5 pts) Suppose the stress is $\sigma=\mathrm{D} \sin (\omega \mathrm{t}+\delta)$. What is the meaning of δ ?
(c) (5 pts) Find the slope of the line from the origin to the point of maximum stress. Hint: write strain in terms of stress and let the stress assume its maximum value; start with $\sigma(t)=\sigma_{\max } \sin (\omega t)$.
(d) (5 pts) Show $\sin \delta=$ A/B. A is the intercept on strain axis. Hint: let $\omega t=-\delta$ in equation in (b) for the stress.
(e) (5 pts) Draw a stress strain curve for a nonlinearly viscoelastic material under sinusoidal strain.

4 The end deflection u of an elastic cantilever beam of length L, Young's modulus E and cross sectional area moment of inertia I is given as $u=2 \mathrm{FL}^{3} / 6 \mathrm{EI}$, with F as the applied force.
Suppose now the beam is linearly viscoelastic and that any needed viscoelastic properties are known. If the force has a time dependence $F(t)$, determine the time dependence $u(t)$ of the deflection.

5 Consider $\mathrm{E}(\mathrm{t})=\mathrm{A}+\mathrm{Be}^{-\mathrm{tb}}$ with $\mathrm{A}, \mathrm{B}, \mathrm{b}$ as constants.
(a) (10 pts) If a relaxation experiment were conducted on your earplug material, do you expect it would follow the above equation? Explain why or why not.
(b) (15 pts) Suppose a material with the given $E(t)$ is subject to step strain $\varepsilon(t)=\left[\varepsilon_{o}+\varepsilon_{1} e^{-a t}\right] \mathbf{H}(t)$, with a as a constant and $\varepsilon_{\mathrm{o}}, \varepsilon_{1}$ as constants. Hint: assume strain starts just after zero so no surface terms.
Determine the stress $\sigma(t)$.

