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Abstract

A Hashin—Shtrikman—Willis variational principle is employed to derive two exact micro-
mechanics-based nonlocal constitutive equations relating ensemble averages of stress and strain
for two-phase, and also many types of multi-phase, random linear elastic composite materi-
als. By exact is meant that the constitutive equations employ the complete spatially-varying
ensemble-average strain field, not gradient approximations to it as were employed in the pre-
vious, related work of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) and Drugan
(J. Mech. Phys. Solids 48 (2000) 1359) (and in other, more phenomenological works). Thus, the
nonlocal constitutive equations obtained here are valid for arbitrary ensemble-average strain fields,
not restricted to slowly-varying ones as is the case for gradient-approximate nonlocal constitutive
equations. One approach presented shows how to solve the integral equations arising from the
variational principle directly and exactly, for a special, physically reasonable choice of the homo-
geneous comparison material. The resulting nonlocal constitutive equation is applicable to com-
posites of arbitrary anisotropy, and arbitrary phase contrast and volume fraction. One exact non-
local constitutive equation derived using this approach is valid for two-phase composites having
any statistically uniform distribution of phases, accounting for up through two-point statistics and
arbitrary phase shape. It is also shown that the same approach can be used to derive exact nonlo-
cal constitutive equations for a large class of composites comprised of more than two phases, still
permitting arbitrary elastic anisotropy. The second approach presented employs three-dimensional
Fourier transforms, resulting in a nonlocal constitutive equation valid for arbitrary choices of the
comparison modulus for isotropic composites. This approach is based on use of the general repre-
sentation of an isotropic fourth-rank tensor function of a vector variable, and its inverse. The exact
nonlocal constitutive equations derived from these two approaches are applied to some example
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cases, directly rationalizing some recently-obtained numerical simulation results and assessing
the accuracy of previous results based on gradient-approximate nonlocal constitutive equations.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

When a structural component comprised of an elastic composite material is large
compared to the microstructural size scale of the composite, and when the geometry
of the component and the applied loading on the component vary sufficiently slowly
with position compared to this size scale, it is often sufficient to idealize the composite
material as being homogeneous, with constant macroscopic or “effective” properties.
However, when these conditions are not met, more sophisticated constitutive modeling
is required to capture the actual material response.

Drugan and Willis (1996) employed Willis” (1977, 1982, 1983) generalization of a
Hashin and Shtrikman (1962, 1963) variational principle to derive a micromechanics-
based nonlocal constitutive equation to treat cases in which the macroscopic elastic
fields vary more rapidly with position than can be adequately treated by the stan-
dard constant-effective-modulus constitutive equation. They considered an ensemble of
random linear elastic composite materials having infinite extent, and derived a con-
stitutive equation that corrects the standard one relating ensemble-average stress to
ensemble-average strain by the addition of a gradient term in the ensemble-average
strain. Drugan (2000) extended their results to include two strain gradient terms. In
both cases, the ensemble-average strain field was assumed to vary sufficiently slowly to
render sensible a Taylor expansion of this field, thus permitting approximate solution
of the integral equations arising from the variational principle.

In the present work we also consider an ensemble of infinite random linear elastic
composite materials characterized by the Hashin—Shtrikman—Willis variational principle.
Now, however, we present two new methods to derive exact micromechanics-based
nonlocal constitutive equations, meaning that the integral equations arising from the
variational principle are solved exactly for arbitrarily-varying ensemble-average strain
fields, so the resulting nonlocal constitutive equations are in terms of the full ensemble-
average strain field and not a gradient approximation to it. The first method involves
making a special, physically sensible choice of the constant “comparison” modulus
tensor that arises in the variational principle; we show that for this choice, the integral
equations arising from the variational principle can be solved directly. The resulting
exact nonlocal constitutive equation is quite compact and rather simple, rendering it
useful for anisotropic and complex composite materials; it applies to two-phase com-
posites, and also to a rather broad class of multi-phase composites. The second method
is restricted, at present, to composites having overall isotropic response, but it permits
arbitrary choice of the (isotropic) comparison modulus tensor. The integral equations
arising from the variational principle are solved exactly by means of three-dimensional
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Fourier transforms, with their inversion being assisted by use of the general represen-
tation of an isotropic fourth-rank tensor function of a vector variable and its inverse.

The paper is organized as follows. Section 2 lays out the formulation for deriving
constitutive response of an ensemble of random linear elastic composite materials and
reviews the Hashin—Shtrikman—Willis variational principle. Section 3 shows the first
new method of deriving an exact nonlocal constitutive equation, based on a specific
choice of the comparison modulus tensor: first for a two-phase composite, then for a
large class of multi-phase composites. Section 4 shows the second new method for
deriving an exact nonlocal constitutive equation, for isotropic elastic composite materi-
als but otherwise arbitrary choice of the comparison modulus tensor. Section 5 derives
some needed results for application of the new nonlocal constitutive equations: namely,
the general representation of an isotropic fourth-rank tensor function of a vector vari-
able, the inverse of this function, and the evaluation of two such functions that arise
in the nonlocal constitutive equations. Finally, Section 6 shows specific applications
of the new nonlocal constitutive equations and makes comparisons of the results with
recent numerical simulations of random elastic composite materials by Segurado and
Llorca (2002), and with the predictions of the gradient-approximate nonlocal consti-
tutive equation of Drugan and Willis (1996) as improved by Monetto and Drugan
(2003).

It bears emphasis that although the exact nonlocal constitutive equations derived here
are specifically for the case of infinite-body composite materials, facilitating use of the
infinite-body Green’s function in the variational principle, all of the ideas presented
for deriving the exact nonlocal constitutive equation based on a special choice of the
comparison modulus tensor (Section 3) go through in other cases for which the Hashin—
Shtrikman—Willis variational principle applies and elastic comparison material Green’s
functions exist.

2. General formulation

We consider random linear elastic composite materials with firmly-bonded phases
which may have arbitrary anisotropy, arbitrary contrast and be present in arbitrary con-
centrations. Since we seek to describe macroscopic constitutive response, we shall an-
alyze an infinite body subject only to applied loading through a body force vector field
f(x) that decays sufficiently rapidly for large magnitudes |x| of the position vector x.
However, the key ideas to be presented here are equally applicable in non-infinite-body
contexts, as will be detailed in future work.

The governing equations for quasi-statically applied body force fields in a specific
composite sample o are equilibrium, geometrical compatibility and constitutive:

Veos+f=0, e=sym(Vu), o=Le, (1)

where o(x, o) and e(x, o) are the stress and infinitesimal strain tensor fields, u(x, o) is
the displacement vector field, L(x, o) is the fourth-rank elastic modulus tensor field, all
in composite sample o, and sym(Vu) denotes the symmetric part of the displacement
gradient. The applied body force vector field f(x) is the same in every composite



1748 W.J. Drugan! J. Mech. Phys. Solids 51 (2003) 17451772

sample. Here and throughout the manuscript, we employ abbreviated symbolic notation
so that, for example, in index notation with summation convention, the last equation
in Eq. (1) reads: o;; = Ljjuep.

Following Hashin and Shtrikman (1962, 1963), it is useful to reformulate system
(1) in terms of a homogeneous “comparison” medium having elastic modulus tensor
Ly (independent of x and o) so that

o(x,0)=Loe(x,a) + t(x,2), t(x,a)=[L(x,a)— Lole(x,®), 2)

where t(x, o) is the “stress polarization” tensor field. Willis* (1977) derivation of the
solution to system (1) for prescribed f(x), in terms of the Hashin—Shtrikman variational
principle, shows that the strain field solution is

e(x, ) = ey(x) — /Fo(x —x")u(x’, o) dx/, (3)

where ey(x) is the solution to the same applied f(x) in the homogeneous comparison
body. Here we have defined

 P[Go(x — X))y

[FO(X - X/)]ijk[ = axl_ax; 5 (4)

(@), (kD)

with Gy(x) being the infinite-homogeneous-body Green’s function for the comparison
material and the notation indicating symmetrization on subscripts ij and k/. The tensor
field t(x, ) appearing in Eq. (3) satisfies the Hashin—Shtrikman variational principle:

é / (X, o) {[L(x, o) — Lol 'e(x, ) + /Fo(x —x")r(x’, ) dx’ — 2e0(x)} dx = 0.
(5)

Willis (1982, 1983) recast the Hashin—Shtrikman formulation for a specific composite
sample in terms of ensemble averages for random composites. Let « denote, as above,
an individual member of a sample space & of composite realizations, define by p(a)
the probability density of o in %, and define a characteristic function y,.(x,o)=1 when
x lies in phase r, and =0 otherwise. Then the probability P,(x) of finding phase r at
X [i.e., the ensemble average of y,.(x,a)] is

Po(x) = (1 (x, ) = /y 1%, ) p(or) da (6)

and the (two-point) probability P(x,x’) of finding simultaneously phase r at x and
phase s at x’ is

Pr(x,X") = (1,(x, ) ys(x', ) E/{/Xr(x,d)xs(X'J)P(a)d% (7)

We shall treat composites comprised of homogeneous phases, so that each phase r
has (constant) modulus tensor L,, where » =1,2,...,n, with n being the total number
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of phases; then L(x,a) of composite sample o, and its ensemble average, are

L(x, u)_ZL,y,(x 2) = (L(x,a)) = ZLP(X) (8)

r=1

As argued by Willis (1982), in most applications it is unlikely that statistical infor-
mation of higher grade than two-point probabilities will be credibly known. Thus, we
follow him and choose the most general trial fields for the stress polarization tensor
field that allow for up through two-point correlations:

X2 = ) u(X)z(x.2). ©)
r=1

[Willis (1982) showed that any more general form together with the Hashin—Shtrikman
variational principle will introduce further statistical information. ]

We shall further restrict the class of composites analyzed to those that are statistically
uniform, and make an ergodic assumption that local configurations occur over any
one specimen with the frequency with which they occur over a single neighborhood
in an ensemble of specimens. For this class of materials, the probabilities become
translation-invariant, so that P,(x) reduces to the volume concentration ¢, of phase r,
and B4(x,x’) = By(x — x’'). Employing these assumptions together with the previous
equations, Willis (1982, 1983) has shown that one obtains the following variational
principle for t,(x):

) {Zc, / 7, (X)[(L, — Lo) ™ 't.(x) — 2e0(x)] dx
r=1

+ ZZ/r,(x) [/I‘O(x — Xt (x")Bs(x — x )dx] dx} =0. (10)

r=1 s=1

Principle (10) is stationary when [substituting for ey(x) from the result of putting Eq.
(9) into Eq. (3) and ensemble-averaging]

(L, — LO)_lrr(X)cr + Z / Fo(x — X/)[Prs(x - X/) - C,CS]tS(XI) dx' = ¢, (e}(x),
s=1

r=12,...,n, (11)

which is a set of n integral equations for t,(x) in terms of (e)(x). When these are
solved, (t)(x) can be determined from ensemble-averaging (9):

T)(x)= Z ¢t (X). (12)
r=1

Finally, the constitutive equation we desire, relating the ensemble averages of stress and
strain in the general case when these depend on position, is obtained by substitution
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of Eq. (12) into the ensemble average of the first of Eq. (2):
(6)(x) = Lo(e)(x) + (t)(x). (13)

Observe from Egs. (11) to (13) that this is a nonlocal constitutive equation.

3. Exact solution for nonlocal constitutive equation for a specific choice of
comparison material

Drugan and Willis (1996) and Drugan (2000) employed three-dimensional Fourier
transforms to solve Eq. (11) for two-phase composites [in which case it simplifies to
Eq. (15) below], and avoided the difficult Fourier transform inversion by considering
slowly-varying ensemble-average strain fields that admit a Taylor expansion. Their
results were therefore approximate nonlocal constitutive equations in terms of strain
gradients.

Here we show that an exact solution of the nonlocal constitutive equation, within
the Hashin—Shtrikman—Willis variational formulation as detailed above, can be found
for a specific choice of the comparison modulus tensor. This exact nonlocal equation
involves the full ensemble-average strain field, not gradient approximations to it, and
hence is valid for arbitrarily-varying ensemble-average strain fields. We show this first
for two-phase composites, and then show how to generalize the analysis to treat a
broad class of composites having an arbitrary number of phases.

3.1. Two-phase composites

We first specialize to the practically important class of two-phase composites, and
employ our assumptions of statistical uniformity and ergodicity. Then the two-point
probabilities can be expressed as (see Willis, 1982)

Py(x —X') —c.cs = (8,5 — cs)h(x —X'), (no sum on indices), (14)

where A(x —x') is the two-point correlation function, defined e.g. by the 12 component
of Eq. (14), and J,, is the Kronecker delta. Using Eq. (14) in Eq. (11) and dividing
through by ¢, gives

2
(L, — Lo) 00 + > (6 — <) / To(x — X)h(x — X )(x') dx’ = (€)(x),
s=1

r=1,2. (15)

First, write out Eq. (15) for each of » = 1,2, then multiply the first by dL; and the
second by JL,, having defined oL, = (L, — Ly):

11(X) + 0L, /I‘o(x — xh(x — x")[1)(x") — 12(x")] dx" = L, (e)(x), (16a)

(%) — 10L; / Lo(x — X )h(x — X1 (x') — 12(x )] dx' = 5L (e)(x).  (16b)
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Now subtract Eq. (16b) from Eq. (16a), noting that the integrals appearing in each are
identical:

T (X) — 12(x) + (1oL, + 025L1)/F0(X —x)h(x — x" )1 (x") — 1o(x")] dx’

=(Li — La){e)(x). (17)

We must solve this integral equation for the quantity [t;(x) — T2(X)]; then Eq. (16)
will give the solutions for the t,(x).

Observe that an exact solution to Eq. (17) is immediately possible if we make the
following choice for the comparison modulus tensor

Lo =cily 4+ Ly, (18)

since with this choice the term in parentheses that multiplies the integral in Eq. (17)
vanishes, so that Eq. (17) reduces to

T (x) — n2(x) = (L1 — Lo){e)(x). (19)
We then substitute Egs. (18) and (19) into Eq. (16) to obtain the following solutions:

t1(x) = ci(Li — Lo){(e)(x) — cica(Li — L) / Lo(x — x")a(x — x")(L; — Lz)(e>(x')dx/, (20a)

Tz(X) = —Cz(L1 — L2)<e>(X) — C]Cz(L1 — Lz) /ro(X — X/)h(X — X/)(Ll — L2)<e>(X,)dX/.

(20b)
Substituting Eq. (20) into Eq. (12) gives
()(x)=(Li — L») {(01 — c2)(e)(x)
—c10: / To(x — x)a(x — x') (L — Ly)(e)(x')dx'|, (21)

so that from Eq. (13) the exact nonlocal constitutive equation is

<0'>(X):[C1L1 +62L2]<e>(x)—C|C2(L1 —Lz) Fo(x—x’)h(x—x’)(L1 —L2)<e>(x’)dx’.

(22)

This equation is explicit and quite condensed, making it useful for complex and
anisotropic composites as well as isotropic composites (for which a specific illustra-
tion will be provided later). It is valid for arbitrary anisotropies, shapes and volume
fractions of the phases, and arbitrary two-point correlation functions 4(x —x’), so long
as statistical uniformity and ergodicity are satisfied. Note that the integral term in Eq.
(22) contains contributions to both the local and nonlocal portions of the constitutive
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equation: for example, in cases of constant ensemble-average strain, Eq. (22) reduces
to the (local) Hashin—Shtrikman estimate of the ensemble-average constitutive equation
for choice (18) of the comparison modulus.

The specific choice (18) of the comparison modulus tensor needed to obtain the
exact result (22) is physically reasonable: for all values of the phase volume fractions,
choice (18) either equals or lies between the moduli of the phases.

Furthermore, we now show that the result (22), which we emphasize is an exact
solution of Eq. (15) with Egs. (12) and (13) for the specific Eq. (18) of the compar-
ison modulus tensor, agrees exactly through second order in phase contrast (L; — L;)
to the iterative solution to Egs. (15), (12) and (13) for small phase contrast, for ar-
bitrary choice of the comparison modulus tensor. To see this, observe first that the
leading-order solution of Eq. (17) in (L; — L), for arbitrary Lo, is precisely (19).
To this end, notice that the integral coefficient, (¢;0L; + ¢;0L), is O(L; — L;). [For
example, for any choice of Ly of the form Lo=AL;+(1—4)L,, 0 < 4 < 1, the integral
coefficient (c¢10L; + 0L )=(cy; — A)(L1 — Ly).] Substitution of Eq. (19) into Eq. (16),
and then the results of Eq. (16) into Eq. (12), gives, through second order in (L; —L;)
for arbitrary Lo

(1)(x) =(c1L1 + 2L, — Lo){e)(x)
—ciea(Ly — Lz)/ro(x —x)h(x — x")(L; — Ly)(e)(x")dx’, (23)

and substitution of this into Eq. (13) gives precisely Eq. (22).

3.2. A class of composites having an arbitrary number of phases

The approach just illustrated for two-phase composites does not appear to be easily
generalized to arbitrary types of composites having more than two phases, since the
integral equations (11) for such composites would involve multiple different two-point
correlation functions. However, there is at least one large class of multiple-phase com-
posites for which the above approach does go through: composites having an arbitrary
number of phases for which it is sensible to group the phases into two types for the pur-
poses of describing their correlation function. For example, consider a matrix-inclusion
composite in which the matrix is treated as one phase and the inclusions are treated
as the second phase, but there is an arbitrary number of different types of inclusions.
The condition needing to be satisfied is that even though the inclusions are different
types, this fact does not affect their statistical distribution. In such cases, here is how
to calculate the two-point probabilities.

We denote one phase (e.g., the matrix) by subscript 1, and the second “phase”
(which is actually comprised of multiple phases; e.g., the inclusions) by subscript 1.
Then, employing our assumptions of statistical uniformity and ergodicity, the two-point
probabilities have the same form as for a two-phase composite, which is, rewriting (14)
in terms of the notation just introduced:

Py —ci =cicth(x = X') =Py — ¢cf = —(Pi; — c1¢7). (24)
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Now divide the second phase group, denoted by subscript /, into (n — 1) phases,
denoted by subscripts 2 through n, such that among these (n — 1) phases only, the
kth phase has the one-point probability p;. The volume fraction of any phase in the
overall composite is denoted by c;. There follow the equalities:

ctea=1 =) a=apk=2..n Y p=1 (25)
k=2 k=2

Using Egs. (24) and (25) we calculate:

Py — A =cicth=ci(1 —c))h, (26a)

Plk:Pllpk:ch[(l_h)pk:clck(l_h)7 k:2,...,l’l, (26b)

c
Py =Py pipj = (cj + cieth) pi pj = cic; (1 + I lc h) , Lj=2,...,n. (26¢)
-

The results (26) can be summarized as

(C] - 51r)cr(cs - 51.?)
1— C1

By(x —x)—ccs= h(x —x’), o sum on r. (27)
An independent check on this result can be performed by adding c,cy to both sides
and then summing on s:

n

& / (CI - 51r)cr / . o
;zﬂm(x X)=c ;c T k= x )g(cs d)=cn  (28)
which is the correct result, having noted that the second sum in Eq. (28) equals unity,
while the third equals zero.

Now, to find an exact nonlocal constitutive equation for such a material, we substitute
Eq. (27) into Eq. (11), divide the result by ¢,, and multiply through by JL, to obtain,
defining T(x — x') = Tp(x — x)A(x — x'),

T,(x) + % oL, Z/T(X — X))y — d15)t(x ) dx’ = L, {e)(x),
s=1

r=12...,n. (29)

Notice that the integrand in Eq. (29) is independent of , and hence is the same in
each of the n equations; it involves the t,(Xx) in the combination

D (e =) =) et(x) — T(x). (30)

s=1 s=1

Thus, generalizing the strategy employed in Section 3.1, we multiply the »=1 equation
of (29) by (¢; — 1), every other equation having subscript » by ¢,, and then add the
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resulting n equations to obtain

[Z C,-‘C,A(X) - TI(X)

—2
[Z 0L, 1+ L2 s1

X /T(x -x') [Z e To(X) — rl(x’)] dx’ = [Z ¢ 0L, — 5L11 (e)(x). (31)
s=1 r=1

The exact solution for the combination (30) of t,(x) appearing in the integrand of Eq.
(29) is obtained from Eq. (31) when the comparison modulus tensor is chosen such
that the bracketed term multiplying the integral in Eq. (31) vanishes

-2 -2
lz 6oL+ 2 s =0 = | Lp= & [z S I b ) B RO
1 - C1 =1 C1
For this choice of comparison modulus tensor, (31) gives
n
[Z et (X) — tl(x)] = lz e, L, — Ly | (e)(x), (33)
r=1

and using this in Eq. (29) gives the exact solutions for the t,.(X):
_ (c1 — 01r) / - ’ /
t(x)=(L, — L)< (e)(x) - ———= [ T(x = x) |> cLy — Ly | (e)(x')dx' ¢,
1— C1 ]
r=12,...,n. (34)

Finally, use of this in Eqs. (12) and (13) gives the exact nonlocal constitutive equation
for the choice of comparison modulus tensor given in the second of Eq. (32):

o)(x) = [Zc, ,

“ [Z e L, — L1]
1 r=1

X /Fo(x —x)h(x — x) lz oLy — LI] (e)(x")dx’. (35)

s=1

It is easy to verify that Eq. (35) reduces to Eq. (22) in the case of two phases.



W.J. Druganl! J. Mech. Phys. Solids 51 (2003) 1745—1772 1755

We emphasize that the procedure employed in this section, to obtain exact nonlo-
cal constitutive equations for two-phase and a large class of multi-phase composite
materials, is essentially algebraic. Therefore, although we analyzed here infinite-body
composites, the same approach will succeed for any other composite sample class for
which the Hashin—Shtrikman—Willis variational principle applies and elastic comparison
material Green’s functions exist.

4. Exact nonlocal constitutive equation for arbitrary choice of the comparison
material

Let us now consider what can be done regarding an exact nonlocal constitutive
equation for arbitrary choice of the homogeneous comparison modulus tensor. Let us
revert, for simplicity, to two-phase composites. As noted earlier, the equations deter-
mining the exact nonlocal constitutive equation within the Hashin—Shtrikman—Willis
variational formulation are

2

(0)(x) = Lo(e)(x) + ()(x).  ((x) = &1,(x), (362)

r=1

where the 1,(x) are obtained by solving the integral equations
2
(L~ Lo) 50+ 300 = ) [ alx = X tx = X dx’ = (e)x),
s=1

r=12. (36b)

For a function f(x) that decays sufficiently rapidly for convergence of Eq. (37), the
three-dimensional Fourier transform and its inverse are defined as, with i =/ —1

o= [ reodnax fo=g [ F@e e (7)

Drugan and Willis (1996) took three-dimensional Fourier transforms of Egs. (36), and
then solved for the nonlocal constitutive equation in Fourier transform space. Their
result can be expressed as

(6)(8) = [Lo + (T)(®)(&)(®). (38)
where they found
(TY(&) = 1oLy (D" 4 ¢10Ls + e,0L; )~ (0" + oLy)
+¢20Lo(T ™" 4 €101, + ¢0Ly) /(I 4+ 8Ly), (39)

having defined

r=re)= 1 / Fo(g — E)hE)dE = - / ToE)RE —E)de.  (40)

83 83
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One key new step toward further progress is the recognition that Eq. (39) can be
manipulated into a more condensed and revealing form, by using the index symmetries
of I and the modulus tensors; the result is

(T)(E&)=c1Li + oLy — Ly
—ciea(Ly — Ly) (N(8) ™' + 1Ly + eaLy — Lo) ™ '(Ly — Ly). (41)

Substituting this into Eq. (38), the full (exact) nonlocal constitutive equation in Fourier
transform space is

(6)(&)= [ClLl +o ko —cie(Li —Lo))(T(E) '+ Lo+ Ly —Lo) 7' (L — L) | (€)(E).

(42)

This form shows clearly why the specific choice (18) for the comparison modulus
tensor leads to a particularly simple exact nonlocal constitutive equation: for that choice,
(42) reduces to

(6)(&) = |c1Ly + 2Ly — crea(Ly — Lo)I(E)(Ly — Ly) | (€)(&). (43)

This is clearly the Fourier transform of Eq. (22).

For the general case of arbitrary comparison modulus tensor and anisotropic compos-
ites, obtaining results from Eq. (42) is complicated, while (43), or its inverse Fourier
transform (22), is about as condensed and convenient as seems possible for a sensible
exact nonlocal constitutive equation. We do, however, wish to obtain an exact nonlocal
constitutive equation for arbitrary comparison material. This will be accomplished from
Eq. (42) in the following sections for isotropic composites. The key to accomplishing
this is the recognition that for isotropic composites comprised of isotropic phases, for
which it is sensible to choose a comparison material that is also isotropic but otherwise
arbitrary, the key quantities to be evaluated in Eq. (42), namely I'(§) [also needed for
(43)], its inverse, and (I'(&) ™" +c1Ly 4+ oLy — Lo) ™!, will all be isotropic fourth-rank
tensor functions of a vector variable. Thus, in the next section we will exhibit the
general representation of such a tensor function, derive its inverse, and evaluate I'(&)
and (T'(§)~! + L, + coL; — Ly)~! for a sensible example choice of the two-point
correlation function.

5. Representation of an isotropic fourth-rank tensor function of a vector variable
and its inverse

5.1. General representation

As just noted, for isotropic composites comprised of isotropic phases, we shall need
a general representation of an isotropic fourth-rank tensor function of a vector variable,
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for fourth-rank tensor functions that have the same index symmetries as the elastic
modulus tensor. Such a function, say F(§), must satisfy

Fijkl(Q ° é) = QmianonQplanop(g) and Fijkl(g) = Fjikl(a) = Fklij(&) (44)

for arbitrary orthogonal second-rank tensors Q and arbitrary vectors &. The most general
representation of F(&) that satisfies all of Eq. (44) is

1 1
Fij(8) = f1(|&])di;61 + f2(|E]) 5 (Oudji + 0udy) + (8D 50k + oudicy)
+ f4(1&]) %(fiéjkél + 0wl + Ei0jl + E0ulk) + f5(IE])EEEé,
(45)

where f1(|&]) — f5(|&|) are arbitrary scalar functions of the magnitude of &. The in-
verse of Eq. (45) can be determined by recognizing that it also must be an isotropic
fourth-rank tensor function of a vector variable satisfying all of Eq. (44), and must
also satisfy

1
Frimn(&)F (&) = Fp (&)t (&) = 5(3i031 + 0udye). (46)

The result for F~!'(§) is identical in form to Eq. (45) except with the following five
coeflicient functions, expressed in terms of the original coefficient functions of F(&):

402 2 4
f1_1(|§|): |a| f3 4f1(f222|§| f4+ |g| f5), f2_1(|E_>|): %,

2 _E2f2 14 2 -2
7D = fofs — [&] fzg Si(fa + |€] fs)’ f4_1(§|)_J‘2(2j3—i-J?§PJ€;)’
£51ED
2ALLGLH A 2N+ L)F—AHGL + f)fs)— [l — 400 + f)S1EP

2D2 1> + f1lEP) (47)

where

D= L2631 + o) +22f1fa + L0+ IEP =15 =224 + ) f51E)1)

5.2. Evaluation of T(&) and (L(§)~" + ¢|Ly + caLy — Lo)™! for arbitrary isotropic
comparison materials and an example two-point correlation function

Recall that T'(§) is defined in Eq. (40). As shown e.g. by Drugan and Willis (1996),
when the comparison material is isotropic with bulk modulus x and shear modu-
lus p, the Fourier transform of the infinite-body I'¢(x) of Eq. (4), which appears in
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the integrands in Eq. (40), is

- 0 0; vy 5 3 &
(o (&) = s killjlrﬁli RS M(3Z_—||:ZM) éé]&ffél- (48)

Note that the two scalar invariants of this are independent of &. Thus, using the first
integral representation in Eq. (40), and using Eq. (45) to represent I'(§), we calculate:

Ly (8) =3 /1([&]) + 6 2([&) + [ (&) + 208 fa(|&D) + [&I* £5(1E])

_ 3k+Tu
= Gn ) (49a)
L (8) = 9/1(1&]) + 3 /2(18]) + 318 /(&) + [EI* fa(&]) + [&]* f5(1&])
3
T3k + 4’ e

where we have used the result shown by Drugan and Willis (1996) that if 4#(0) =1
but otherwise arbitrary,

o [ihay = | ok [ soay|  —wo-1. (50)
8n3 8n3 <0
Thus, conditions (49a), (49b) are valid for arbitrary two-point correlation functions
having 4#(0)=1. To evaluate I'(§) completely, three additional conditions are needed so
that, together with Eq. (49), we have five independent conditions on the five functions
appearing in Eq. (45); this requires specification of a two-point correlation function.
To facilitate completely analytical results, we will evaluate I'(§) for the follow-
ing choice of two-point correlation function with associated three-dimensional Fourier
transform

8na’

hx)=e M = W) = G

(51a,b)

With appropriate choice of the constant «, this correlation function is a quite reasonable
approximation to the two-point correlation function for a matrix containing a random
distribution of nonoverlapping spherical particles/voids. We choose a so that the integral
involving the two-point correlation function in the first gradient approximation to the
nonlocal constitutive equation of Drugan and Willis (1996), namely [defining » = |x|]

/00 h(r)rdr, (52)
0

is identical to the value of this integral obtained by Monetto and Drugan (2003) using
the Verlet and Weis (1972) correction to the Wertheim (1963) solution of the Percus
and Yevick (1958) statistical mechanics model of random hard sphere distribution. This
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means that « is related to the sphere radius R as
R 5Aci(1+281) + 2B[(1 +2¢1)(2 + ¢1) — c1(¢1/e1 PP(10 — 28, + )]

53
10B(1 — c1)(1 + 281) » (338)
where

R 1, 3 &(1 - 07117, — 0.11483

p— —_— — Azi

ATaT 6 2 (1= ’
(1-2¢)

B=124 — 7 53b
G2+ ) (53b)

Having chosen «a in this way, Fig. 1 shows a comparison of the two-point matrix
probability P (|x — x'|) = Px(r), obtained using Eq. (14) with Egs. (51) and (53),
as a function of the distance between the two sampling points as compared to the
extremely accurate results calculated from the Verlet—-Weis correction to the Percus—
Yevick—Wertheim solution by Torquato and Stell (1985) (the last results being in
excellent agreement with the essentially exact computer simulations of Haile et al.,
1985); the agreement is seen to be quite good.

The correlation function given in Eq. (51) assumes an isotropic distribution of phases,
i.e., A(x)=h(|x|), in which case the second integral form of Eq. (40) can be rewritten
as

1 T 2n N oo )
(@ =gz [ [ o0 | [0 (Ve 2Aelpcosi+ 7 ) o2 an] sin s anas,
(54)

where p, 0, ¢ are spherical coordinates. Choosing & to lie purely in the 3-direction
and using the representation (45) for I'(§), we obtain from Eq. (54) with Egs. (48)
and (51b) the following three additional conditions on the functions in Eq. (45) for

L'&):
I8 = fi(I€)

_ 3K+ u /R/W}I(\/mz_2|g|pcos¢+p2>pzsin5¢dpd¢
0J0

3272u(3K + 4p)
Gkt p) alg|G+ &) + (a*[g]* — 24°|E]* — 3)arctan(a[E))
T 16u(3Kk + 4p) a>[g]
(55a)

Pian® =5 £(E)

— 1 B s 2 _ 2)
~amara [ (V= 2eoso

X[3(3K + 5p) + Bk + ) cos 2¢]p? sin® p dp d¢

=36k + walg| — (15k + 17p)a &> + 3(1 + ?[&1)[3xk + p + 3k + 5p)a*|E|*] arctan(alE|)
N 16u(3K + 4u)ad &5

(55b)
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c1=03

Pao(r)

(a) r/D

0.5 c1=05

Pas(r)

(b) r/D

Fig. 1. Comparison of the matrix two-point probability function for (a) ¢; =0.3 and (b) ¢; =0.5, calculated
from the exponential two-point correlation function (51) with a chosen as explained (solid line) with the
effectively exact result calculated from the Verlet-Weis improvement to the Percus—Yevick model (Torquato
and Stell, 1985). The separation of the two points is denoted by 7, and the sphere diameter by D.

Fin(®) =3£(8) + /(&) + 517 /(&)

3 s OO~ .
:m/o /0 h (\/I&I2—2|€p008¢+p2> p*sin’ pdpd¢
N 3
S TEerEwmEay

One check of the results (55) is to use the fact shown in the appendix of Drugan
and Willis (1996) that

[(1 + a*[&]*) arctan(a[§]) — al&[]- (55¢)

3k4+u 3(k+2p)

Fijp(0) = Pijpy = — 7 0i0 10u(3x + 4u)
ik1(0) jkl 15u(3% + 4u) 7 K+ 10u(3rc + 4p)

(5ik5jl + 5i15jk ). (56)
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It is easy to confirm that in the || — 0 limit, all three of the results in Eq. (55) reduce
to the appropriate P component obtained from Eq. (56).
Finally, the five conditions (49) and (55) permit solving for the five functions
S1(I&]) — f5(|&]), so that the explicit representation of T'(§) is

1 1
Tij(8) = f1(1&)0ijom + f2(1&]) 5(51‘1{5]‘1 + 0idj) + f3(|&]) 5(51‘1‘51(51 + oué&i))

+ f4(1&]) %(éiéjk‘fl + &ioulr + Ei0jl + E0ulr) + f5(|€])EEEé,

(57)
with
AED = — Br+p)  alg|(3+a’ &) + (a*[§]* — 24°|E|* — 3) arctan(a(§|)
PRV 603K + 4p) IER ’
(58)
e = =33k + walg| — (15x + 170)a3 |E]* + 3(1 + @ |E]2)[3K + u + 3k + Su)a?|E|*] arctan(alE|)
- 8u(3K + 4p)ad|E[ ’
B (3K + p)
fEh = $1Gr + AT
x[(15 + 13d’[§[*)al&| — 3(5 + 64°[&]* + a*[g|*) arctan(a[§])],
_ 3 3
Sa(l8) = I ETES YL {15GK + pyalg| + (57x + 37u)a’ [§|
+4QB K +4p)d’ [ =3 (1 +a’[&]%) [5(3r+ )+ 9(c + p)a’ & arctan(alg|) } ,
FillEh = — O 105 4 1152 € + 16a* [ ale)

C16u(3k + 4p)ad|E[°
—15(7 + 10a°|E|* + 3a*|E|*) arctan(alE))].

Next we evaluate the function (I'(§) ™' +c1 Ly 4+c,L; —Lg) ™', which is needed in the
exact nonlocal constitutive equation (42). Since for isotropic composites comprised of
isotropic phases this is an isotropic fourth-rank tensor function of a vector variable, its
evaluation is directly accomplished by repeated use of the inverse formula (45) with
Eq. (47): First, I'(§)~" has the form (45) but with coefficient functions given by Eq.
(47) in terms of the coefficient functions (58) for I'(§). To this is added the (constant)
fourth-rank tensor

(c1la + ey — Lo)ijur = (K — 241/3)0:;0k1 + [i(0ix 01 + 6:10 ), (59)

and then the inversion formula (45) with Eq. (47) is applied to the result. The compo-
nents of (F(§)™' +¢iLy +co Ly —Lg) ™! are thus given by Eq. (45), with the following
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coefficient functions expressed in terms of the coefficient functions (58) for I'(§):

where

).

fi(eh=

folEh=

f3(\2‘;|):

J?4(‘§|):

fs(\é|)=

%{4(1 +20/2)BN =GR =20 G/ + f2)]

+BR+AD[A11LIE + A1 fs — DIEMN
— 43R = 20 LA+ 208) + 2021 + £)]EP
— AL =252 + f)1E),

/2
L+20fy

%{613(1 +24if2) + IR fT €

—4[9R f1 + (3% — 20) >1(fa + f5[E)},

Ja
(I +202)(1 + 201 f2 + [AlE]* f3)°
1

D(1 + 2fifs + fifa|E]?)
— 128 f3 fa — 9Rf31 — 4 £a(fa + f5[E7)

i+ 3R+ 31 + fo))] + RS2 falE[2Y,

{301 +24a/2)[4/5(1 + 383 /1 + /2))

D=4(1+ 20301 +38G /1 + (1 +2/if2)

+ 3R 4 4+ 18RAC S + f2)I(fal&]* + /5[8[*)

+ RS+ 20 /5) (81 — fifs]E[*T}

As a check, it is easily verified that for K = i = 0, which corresponds to the special
choice (18) for the comparison modulus tensor, the results (60) reduce to those for

(60)

The results just given, i.e. the completely explicit representation of (I'(§)~' +¢;L, +
oL — Lo)™!, render the exact nonlocal constitutive equation in Fourier transform
space, (42), completely and explicitly specified for isotropic composites having the
two-point correlation function (51a) and arbitrary isotropic comparison moduli. When
an ensemble-average strain field is specified, (42) can be inverse Fourier transformed
to obtain the exact physical-space nonlocal constitutive equation. One example of this,
permitting assessment of a prior gradient-approximate nonlocal constitutive equation,
is provided in Section 6.2.
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6. Example evaluations of the exact nonlocal constitutive equations for isotropic
composites

6.1. Evaluation of special exact nonlocal constitutive equation for bulk modulus

One interesting result that is easily obtained from the exact nonlocal constitutive
equation (22) [whose Fourier transform is (43)], resulting from the special choice (18)
of comparison modulus tensor, is the calculation of the nonlocal contribution to the
bulk modulus of an isotropic composite having isotropic phases. In this case, we can
represent the tensor (L; — L,) appearing in Egs. (22) and (43) as

(Li — Lo)iju = 400 + fi(0udjr + 0udp),  A=721 — o, fi=j1 — . (61)
Then we calculate for the term involving I'(§) in Eq. (43):

(Ll - L2)zjmnrmn0p(a)(Ll - L2 )opkl
:}?menn(‘t:)éi_/ékl + ZZﬁ[Fi/'nn(‘t:)ékl + 0L i (8)] + 4ﬂ2Fljjkl(§)~ (62)

To evaluate the bulk modulus, we consider an ensemble-average strain field consist-
ing solely of equal triaxial straining

(e)ij(x) = i (e)(x), (63)

i.e., pure volume change, and we wish to relate the hydrostatic stress to this volume
change. Then Eq. (43) becomes, using Egs. (62) and (63)

(6)i(8) = [(c1 L1 + caLo )ik — €162(92% + 1221 + 42 ) g (8)1(E)(8). (64)

Now recall from Eq. (49b) that the invariant I';;(&) appearing in Eq. (64) is indepen-
dent of &! Thus, the bracketed term in Eq. (64) is independent of &, so that employing
the definitions of Z, fi from Eq. (61), evaluating the first term in the brackets in Eq.
(64), enforcing the choice (18) for the comparison moduli in Eq. (49b) and finally
inverse-transforming Eq. (64), we obtain for the exact nonlocal constitutive equation:

3ciea(ky — K2 )?
3(c1k2 + 1) +4(c1pp + o)

(0)i(X) =9 |c1K1 + o160 —

(e)(x). (65)

This shows that there is no nonlocal correction for the bulk modulus from the exact
nonlocal constitutive equation! This conclusion is valid for arbitrary isotropic random
two-phase composites, since the evaluation of Iy (&) in Eq. (49b) did not rely on
use of a specific two-point correlation function. (One can also verify that the gradient
correction for the bulk modulus in Drugan and Willis, 1996 vanishes.) This result
provides a direct explanation for the independence of bulk modulus on volume element
size in the numerical simulations of Segurado and Llorca (2002) of a matrix reinforced
by a random distribution of spherical particles.
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6.2. Evaluation of general exact nonlocal constitutive equation for sinusoidally-
varying ensemble-average shear strain

One interesting calculation carried out by Drugan and Willis (1996) was their in-
vestigation of the “representative volume element” size needed for accuracy of the
standard constant-effective-modulus constitutive equation to be valid. They did this
by considering an ensemble-average strain that varied sinusoidally with position, and
then determining the wavelength of the strain variation at which their nonlocal gra-
dient term made a 5% correction (or any other desired value) to the standard local
term. They obtained specific results for isotropic composites consisting of a matrix
reinforced/weakened by a random distribution of identical nonoverlapping spherical
particles/voids, by using the Percus—Yevick statistical mechanics model of hard sphere
distribution. Monetto and Drugan (2003) improved their results by employing the more
accurate Verlet-Weis modification to the Percus—Yevick model.

Here we will perform the same type of analysis by employing the general ex-
act nonlocal constitutive equation derived in Sections 4 and 5. We will consider
the nonlocal variation of the isotropic composite shear modulus, and calculate the
wavelength of sinusoidally-varying shear strain at which the full nonlocal constitutive
shear modulus differs by 5% from the local term. Thus, we will analyze the following
ensemble-average strain field

2
(€)12(x) =¢sin %, all other (e);;(x) =0, (66)
where ¢< 1. The three-dimensional Fourier transform of this strain field is
N . . . . 2n
()12(8) = 4% [3(B + 1) — (B — &) 8(E)0(&),  where f=F, (67)

and where o(-) is the Dirac delta function. We wish to calculate the shear stress
component associated with Eq. (66); that is, from Eq. (42)

(6)12(8) = 2 [ClLl + el

—eiea(Li L)) + allo+oli— L) (Li—Lo)| (@)

1212
(68)
Application of Eq. (62) with Eq. (61) shows
(L~ L)TE) ™ +els + ol — L) (L —Lo)|
=4(u — P [(0E) " +als + oL —Lo)~'| (69)

and then use of our results at the end of Section 5.2 give
_ _ 1, 1,
(@)™ +ala+eli— L™ | =5 a8+ 3 74(EDE +8)

+ f5(EHEE. (70)
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Employing these results, (68) becomes

(6)12(8) = 2{01H1 +eapn — crea( — 1) 121518 + F4(ENE + &)

+4 758D} O (E). (71

Now, employing Eq. (67), it is an easy matter to perform the inverse Fourier transform
of Eq. (71), given the form of Eq. (67) in terms of the Dirac delta functions. The
resulting exact nonlocal constitutive equation in physical space is

(@h2(e1) = 2{ crpu + otz = crealpn = wP[275(B) + BF (B e sin(Br),

2
B= Tn (72)

where from Eq. (60)

S2(B) J4(B)
14 20/2(p) (1420421 + 20 /2(B) + P> fa(B)]

f2(P), fa(p) are given by Eq. (58), and from Eq. (59), fi=cip + capq — p. In all
of these expressions, the isotropic moduli associated with L; are (ki,u;), with L,
are (xp, o) and with the comparison modulus tensor Ly are (k, ), so that the exact
nonlocal constitutive equation (72) has been obtained in terms of arbitrary comparison
moduli.

To compare with previous results, we now choose the comparison modulus tensor to
equal the matrix modulus tensor, Lo =L;; this appears to be a particularly good choice,
as discussed by Drugan and Willis (1996) and Drugan (2000). One confirmation of the
exact nonlocal constitutive equation (72) is the fact that in the limit as the wavelength
[ — oo (ie., p — 0), the braced term in Eq. (72) does indeed reduce to the Hashin—
Shtrikman estimate for the effective (composite) shear modulus (see, e.g., Drugan,
2000, Eq. (82)):

, 611(r2 + 22) + (et + 22 )(9%2 + 81z )
12(952 + 8i2) + 6(r2 + 22 )2ty + c1pi2)

(B = Fap)= , (73)

Heft = 4 (74)
Now, to determine the length / at which the nonlocal contribution in (72) makes a 5%
correction to the local term (74) for the composite shear modulus, we solve for / in
the following equation, having defined u(f) to be the braced term in Eq. (72)—i.e.,
the total (local plus nonlocal) composite shear modulus, and with g being given by
Eq. (74):

H(p) = perr _
Hefr

0.05. (75)

We have obtained results for the cases of an isotropic matrix weakened by voids,
and strengthened by rigid particles. In both cases, the results for / from Eq. (75) are
independent of the value of the shear modulus of the matrix, but do depend on the
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matrix Poisson’s ratio; in determining this, we have used the fact that
~2(1+)

K= m K, (76)

where v is Poisson’s ratio. Figs. 2 and 3 show comparisons of the results calculated as
just explained from the exact nonlocal constitutive equation, with those from Monetto
and Drugan’s (2003) improvement (by incorporating the Verlet-Weis improvement
of the Percus—Yevick model) of the Drugan and Willis (1996) gradient-approximate
nonlocal constitutive equation. One observes that the predictions of the gradient-
approximate nonlocal constitutive equation are quite good, except when the length
scale of the ensemble-average strain variation becomes on the order of the diameter
of the spherical particles/voids; the comparisons show that the gradient-approximate
nonlocal constitutive equation predictions are far more accurate for voids than for rigid
particles.

6.3. Comparison of predictions of the two exact nonlocal constitutive equations

Finally, let us compare the predictions of the two exact nonlocal constitutive equa-
tions for two-phase composites derived in this paper, namely (22) [which results from
the special choice (18) of comparison modulus tensor and whose Fourier transform is
(43)], and (42) [which can be evaluated in physical space for isotropic composites and
an arbitrary choice of the comparison modulus tensor via the results in Section 5, as
shown in Section 6.2]. Comparing Eq. (43) to Eq. (42), it is clear that they differ by
the term

cily + oLy — Lo (77)

appearing in Eq. (42). We can thus assess the predictions of the special nonlocal
constitutive equation (43) [(22)] by comparing the results of (42) for different choices
of the comparison modulus tensor, one choice being (18) which gives (43). In this
regard, we first recall from the discussion following (22) that, phrased now in terms
of the Fourier transform results, (43) agrees exactly through second order in phase
contrast (L; — L,) with Eq. (42) for small phase contrast, for arbitrary choice of the
comparison modulus tensor [this can also be seen directly from Egs. (42) and (43)].
Thus, the two exact nonlocal constitutive equations will agree well regardless of the
choice of comparison modulus in Eq. (42) when the phase contrast is small.

To compare predictions when the phase contrast is not small, let us consider ma-
trix/inclusion composites. We noted earlier that a good choice for the comparison mod-
ulus tensor in this case is the matrix modulus, Ly = L;; for this choice, the quantity
in Eq. (77) becomes

C]L2+62L1 —L():(l —C])(L] —Lz). (78)

This shows that the special exact nonlocal constitutive equation (43) will agree most
closely with the general one (42) for small phase contrast (as already noted), and for
the highest concentrations of inclusions/voids. Furthermore, (78) suggests that for the
two extreme cases of a matrix weakened by voids or strengthened by rigid particles,
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Fig. 2. Comparison of “representative volume element” size normalized by sphere diameter for the composite
elastic shear modulus from the exact nonlocal constitutive equation versus the single gradient-approximate
nonlocal constitutive equation of Drugan and Willis (1996) as improved by Monetto and Drugan (2003),
for an isotropic matrix weakened by a random distribution of nonoverlapping identical spherical voids.
(a) matrix Poisson’s ratio v=10.2, (b) v=0.33.
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Fig. 3. Comparison of “representative volume element” size normalized by sphere diameter for the composite
elastic shear modulus from the exact nonlocal constitutive equation versus the single gradient-approximate
nonlocal constitutive equation of Drugan and Willis (1996) as improved by Monetto and Drugan (2003), for
an isotropic matrix stiffened by a random distribution of nonoverlapping identical spherical rigid particles.
(a) matrix Poisson’s ratio v=0.2, (b) v=0.33.
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(43) will agree more closely with (42) for voids (L; = 0) than for rigid particles
(Ly — o0). These conclusions are confirmed by the specific comparisons shown below.

Contrasting Eq. (43) with Eq. (42) is complicated by the fact that I'(§) is also a
function of the comparison moduli, so making different choices for the comparison
moduli does not only change the term (77) in Eq. (42). Furthermore, one finds that
the choices Ly =L, and Ly =L, do not lead to values of the purely nonlocal term that
bound the possible values of this nonlocal term, but these choices do lead to values of
the total modulus estimate (local plus nonlocal terms) that bound all possible values
of this modulus (for all choices of Ly lying between L; and L,).

To show some representative quantitative results, we shall make use of the example
case studied in Section 6.2 and employ the exact nonlocal constitutive equation (72),
which is valid for arbitrary choice of the comparison moduli. As noted above, the
braced term in Eq. (72), u(p), gives the full prediction for the composite elastic shear
modulus, incorporating both local and nonlocal contributions, whereas just the nonlocal
term is given, for arbitrary comparison moduli, by [u(f)—n(0)]. It seems most sensible
to examine how the full prediction u(f) of the composite elastic shear modulus, rather
than just the nonlocal term, is affected by the choice of the comparison moduli, since
the local term is also significantly affected by this choice, and also since the extreme
choices Ly =L, and Ly = L; give results that bound the full modulus prediction but
not purely the nonlocal part, as noted above.

Using Eq. (72), we have calculated the full composite elastic shear modulus u(f)
for a sinusoidal wavelength equal to one sphere diameter, for three choices of com-
parison modulus: equaling the matrix modulus, the inclusion modulus, and the special
choice (18) [in which case the results coincide with those of the special exact nonlocal
constitutive equation (22)]. In all cases, the resulting u(f) for the choice (18) lies
within the results for the two other choices. Four representative plots are shown for
this full composite shear modulus normalized by the matrix shear modulus; since we
have already shown that the predictions will be close for small-contrast composites,
we illustrate large-contrast cases. Fig. 4 shows the cases of a matrix weakened by in-
clusions having 1/3 and 1/10 the shear modulus of the matrix; Fig. 5 shows the cases
of a matrix stiffened by inclusions having 3 and 10 times the matrix shear modulus.
The matrix and inclusion Poisson’s ratios all equal 0.2 in these plots; changing the
Poisson’s ratio has minor effects on the plots. If we regard the plots for comparison
modulus =matrix modulus (Ly=L,) as giving the most physically realistic results (still
somewhat of an open question), we observe that, in accord with the general reasoning
presented above, the results from the special nonlocal constitutive equation (22) are
in closest agreement with the comparison = matrix results from Eq. (72) at the high-
est inclusion volume fractions for both the weak and strong inclusion cases. It would
seem valuable to have a simple exact nonlocal constitutive equation that is reasonably
accurate at high inclusion concentrations; the figures show this to be the case for (22)
[(43)]. Note for example that at ¢; = 0.5, the choice (18) is identical (obviously) to
Ly =L + ¢;L,, not a bad choice for the comparison modulus tensor. The figures
also show, in accord with prior reasoning, that the special nonlocal constitutive equa-
tion results agree significantly better in the weak inclusion cases with the comparison
modulus = matrix modulus results than in the strong inclusion cases.
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Fig. 4. Full (local plus nonlocal) composite elastic shear modulus, p(f), normalized by matrix shear modulus
for sinusoidal ensemble-average shear straining with wavelength equal to inclusion diameter, for the cases of
inclusions having shear modulus equal to (a) 1/3 of and (b) 1/10 of the matrix shear modulus. The Poisson’s
ratio of all phases is 0.2. The upper curves correspond to Ly = L, the lower curves to Ly = L, and the
intermediate curves to Lo = c1Ly + caLj, so that the intermediate curves show the results from the special
exact nonlocal constitutive equation (22) [(43)].

Finally, it seems important to emphasize that even in cases in which the special
exact nonlocal constitutive equation (22) [or (35) in the case of multiple phases] is not
expected to be quantitatively physically sensible due to the special comparison material
choice, it remains valuable to have such an exact nonlocal constitutive equation e.g.
to confirm the accuracy of numerical or approximate solution methods for nonlocal
constitutive equations which permit a more realistic comparison material choice [but
which can be checked by making the choice (18) and comparing with the exact result
(22) or (35)].
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Fig. 5. Full (local plus nonlocal) composite elastic shear modulus, p(f), normalized by matrix shear modulus
for sinusoidal ensemble-average shear straining with wavelength equal to inclusion diameter, for the cases
of inclusions having shear modulus equal to (a) 3 times and (b) 10 times the matrix shear modulus. The
Poisson’s ratio of all phases is 0.2. The upper curves correspond to Ly = L, the lower curves to Ly = Ly,
and the intermediate curves to Ly = ¢1Ly + ¢o g, so that the intermediate curves show the results from the
special exact nonlocal constitutive equation (22) [(43)].
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