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Abstract

The physical meaning of Cosserat, void, and microstretch elastic constants is analyzed and
interpreted. Various torsion experiment designs provide a clear path to extract Cosserat elastic
constants independently of any dilatation gradient sensitivity the material may have. For void
elasticity (with sensitivity to dilatation gradients) there is no known quasi-static modality to
demonstrate phenomena or extract elastic constants independently of any sensitivity to rotation
gradients. Wave methods may be appropriate if there is minimal viscoelastic dispersion. Mi-
crostretch elasticity, which includes sensitivity to gradients of rotation and of dilatation could
account for bending effects larger than those of Cosserat elasticity.

1 Introduction

The amount of freedom embodied in a theory of elasticity is not imposed by the requirement of
mathematical consistency. For example, the early uniconstant elasticity theory of Navier [1] has
only one elastic constant and Poisson’s ratio must be 1

4 for all materials. This theory is based upon
the assumption that forces act along the lines joining pairs of atoms and are proportional to changes
in distance between them. This theory was abandoned based on experiment that showed materials
exhibit various values of Poisson’s ratio. Classical elasticity has two independent elastic constants
for isotropic materials; the Poisson’s ratio can have values between -1 and 0.5. Cosserat elasticity
[2] [3] (micropolar [4] if one incorporates an inertia term) has more freedom than classical: points
can rotate as well as translate; an isotropic material has six elastic constants. The microstructure
elasticity theory of Mindlin [5], also called micromorphic elasticity, has even more freedom; it allows
points in the continuum to translate, rotate, and deform. This adds considerable complexity; for
an isotropic micromorphic solid, there are 18 elastic constants. One can also incorporate a local
dilatation variable [6] as done in void elasticity (5 elastic constants) or combine a dilatation variable
with Cosserat elasticity as in microstretch elasticity [7] (9 elastic constants). In nonlocal elasticity,
stress at a point depends explicitly on strain in a region around that point [8]. Nonlocal integrals
have been approximated as a differential form [9] that entails a simple sensitivity to strain gradients;
such gradient approximations have been used and called nonlocal.

The rationale for using a generalized continuum theory with complexity greater than that in
classical elasticity is to enable one to interpret phenomena associated with nonzero size of material
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microstructure and to correctly make predictions of stress and strain fields when gradients of stress
or strain are present. There is no length scale in classical elasticity. Length scales do occur in
the definition of fracture toughness. Also, toughness of foams is related to the size scale of the
cells in the foam [10]. Stress concentrations such as holes and cracks entail large gradients of
strain. Generalized continuum theories predict stress concentration factors that differ from those
of classical elasticity. Understanding the robustness of heterogeneous materials can benefit from
a generalized continuum approach. In composite materials and in biological materials, structural
length scales may be non-negligible in comparison with length scales associated with heterogeneity
of stress around stress concentrations or in experiments in torsion or bending or indentation. In
any material at the nano-scale, length scales in the material’s fine structure are likely to be non-
negligible in comparison with specimen size. In such cases, classical elasticity is unlikely to suffice
for adequate predictions.

In a review of experimental methods for Cosserat solids [11]; Cosserat elasticity was compared
with other generalized continuum theories, especially nonlocal elasticity; microstretch elasticity
was not considered. More recently, microstretch elasticity has become a topic of interest. Also, our
laboratory has recently observed evidence of strong Cosserat effects in reticulated foam [12] and in
negative Poisson’s ratio foam [13]. In this article, elastic constants in several generalized continuum
theories are analyzed and elucidated. First the theories are presented, compared and discussed.
Predictions of behavior are presented with interpretation of elastic constants. Prior experiments
are reviewed and guide for future experiments is provided.

2 Cosserat elasticity

Of the generalized continuum theories, Cosserat elasticity has been the most thoroughly studied.
The Cosserat theory of elasticity [2] [3] incorporates a local rotation of points as well as the trans-
lation of points in classical elasticity. In addition to the stress (force per unit area) in classical
elasticity, Cosserat elasticity incorporates a couple stress (a torque per unit area). Eringen [4]
added a local inertia term called micro-inertia and renamed Cosserat elasticity micropolar elastic-
ity. At frequencies low enough that local resonances are not approached, Cosserat and micropolar
are used interchangeably.

The physical origin of the Cosserat couple stress is the summation of bending and twisting
moments transmitted by structural elements in materials. The local rotation corresponds to the
rotation of structural elements.

The Cosserat theory of elasticity is a continuum theory that entails a type of nonlocal inter-
action. The stress σij (force per unit area) can be asymmetric. The distributed moment from
this asymmetry is balanced by a couple stress mij (a torque per unit area). Cosserat elasticity
incorporates a microrotation vector φi that is kinematically distinct from the macrorotation vector
ri = (eijkuk,j)/2. φi refers to the rotation of points, while ri refers to the rotation associated
with translation motion of nearby points; eijk is the permutation symbol; εij = (ui,j + uj,i)/2 is

the small strain tensor. The antisymmetric part of the stress is related to rotations. σantisymij =
κeijm(rm−φm) in which κ is an elastic constant. The constitutive equations [4] for linear isotropic
Cosserat elasticity are:

σij = 2Gεij + λεkkδij + κeijk(rk − φk) (1)

mij = αφk,kδij + βφi,j + γφj,i (2)

λ and G are classical elastic moduli. The physical meaning of G is clear; it is the shear modulus
used in engineering and represents a material stiffness for shear deformation. The physical meaning
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of λ is λ = C12, the elastic modulus component [14] which couples strain in one direction with stress
in an orthogonal direction, with all other strains held constant. Further, λ = B − 2

3G, with B as
the bulk modulus. The remaining four of the six isotropic Cosserat elastic constants are α, β, γ
which provide sensitivity to rotation gradient; κ is a modulus that quantifies the degree of coupling
between macro and micro rotation fields. The following technical elastic constants [15] facilitate
physical interpretation.

Y oung′s modulus E =
G(3λ+ 2G)

λ+G
(3)

Shear modulus G (4)

Poisson′s ratio ν =
λ

2(λ+G)
(5)

Characteristic length, torsion `t =

√
β + γ

2G
(6)

Characteristic length, bending `b =

√
γ

4G
(7)

Coupling number N =

√
κ

2G+ κ
(8)

Polar ratio Ψ =
β + γ

α+ β + γ
(9)

The Young’s modulus, shear modulus, and Poisson’s ratio are the values observable in exper-
iments that impose uniform stress without any gradient [15]. The characteristic lengths appear
in analyses of torsion and bending [15]; structural rigidity increases as the thickness of a rod or
plate assume a sufficiently small multiple of the characteristic length. The coupling number N is
a dimensionless measure of the degree of coupling between the rotation and displacement fields.
The limit N = 1 corresponds to “couple stress elasticity”. The dimensionless polar ratio (of ro-
tation sensitivity moduli) is analogous to Poisson’s ratio in classical elasticity. We remark that a
parameter δ = N

`b
was used in an analysis of bending of a circular cylinder [16] of a Cosserat solid.

Further, Eringen [4] used µ + κ/2 to represent the shear modulus G observed in the absence of
gradients. Because that causes µ to differ from the observed shear modulus contrary to the usual
interpretation, we do not use that notation.

Limits on elastic constants imposed by energy considerations [15] are G > 0, B > 0, `b > 0,
`t > 0, 0 < N < 1, 0 < Ψ < 3/2, −1 < β

γ < 1.

3 Microstretch elasticity

The microstructure elasticity theory of Mindlin [5] allows points to deform as well as to translate
as in classical elasticity and to rotate as in Cosserat elasticity. The theory allows a continuum
interpretation of wave dispersion observed in crystal lattices. The points in the continuum may be
envisaged as local unit cells of the physical microstructure. A relative deformation, the difference
between gradient of macroscopic displacement and micro-deformation is defined. Strain energy
arguments couple relative deformation to relative stress. The gradient of micro-deformation is cou-
pled to double stress which is a ratio of pairs of forces per area. Double stress includes the Cosserat
couple stress. Microstructure elasticity requires 18 elastic constants for an isotropic material. The
complexity of this theory presents challenges for interpretation.
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Microstretch elasticity [7] is a subset of Mindlin microstructure [5] / micromorphic elasticity.
Microstretch elasticity is a generalized continuum representation that includes the rotation sensitiv-
ity of Cosserat elasticity and the sensitivity to dilatation gradient associated with void theory (§4).
Microstretch elasticity was stated to be simpler than microstructure elasticity; indeed, it entails 9
static isotropic elastic constants rather than 18. The constitutive equations for isotropic material
at constant temperature are:

σij = 2Gεij + (λuk,k + λ0φ)δij + κeijk(rk − φk) (10)

mij = αφk,kδij + βφi,j + γφj,i (11)

3s = λ1φ+ λ0uk,k (12)

λk = a0φ,k (13)

Here λk is called [7] an internal traction that causes local dilatation; it is also called [6] an
equilibrated stress vector; λk is the dilatational component of double stress [5] which Eringen calls
first stress moments. Double stress refers to pairs of force per unit area; if the pair of forces
generates a moment, then it is a couple stress. Variable s is the difference between the trace of a
local stress and the trace of the true stress; it is also called [6] intrinsic equilibrated body force; u is
displacement and φ represents a local dilatation variable, a change [6] in volume fraction. Observe
that φ as a scalar has no relation to the local rotation vector φk in Cosserat elasticity.

Nonclassical contributions to the stress σij include (i) an asymmetric contribution due to
Cosserat rotation difference coupled via Cosserat κ and (ii) a hydrostatic contribution due to
local dilatation φ coupled via the microstretch constant λ0.

As for elastic constants, λ and G are classical elastic moduli, α, β, γ are Cosserat elastic
constants that provide sensitivity to rotation gradient, and κ is a Cosserat elastic constant that
quantifies the coupling between macro and micro rotation fields. New microstretch elastic constants
include a0, λ0, and λ1. Constant a0 provides sensitivity to gradient of local dilatation, λ0 is a micro-
stretch modulus that couples dilatation variable change to stress and dilatation to equilibrated body
force s, and λ1 is a modulus that couples local dilatation variable φ to s.

As with Cosserat elasticity, characteristic lengths may be defined for microstretch elasticity.
The most natural definition is in terms of a ratio of a non-classical elastic constant to a classical
one. So, we define a characteristic length in terms of the ratio of the gradient sensitivity constant
to a classical modulus; C1111 is the constrained modulus tensor element.

`m =

√
3a0
C1111

(14)

In some analyses, more complex length parameters arise. For example in a study of bending
[17] a variable ζ was defined with dimensions of inverse length.

ζ =

√
1

3a0
(λ1 −

λ20
λ+ 2G

) (15)

But λ+ 2G = C1111, the constrained modulus. So by analogy to Cosserat elasticity we define a
coupling coefficient in terms of a ratio of generalized continuum moduli to a classical modulus.

Nm =

√
λ1 −

λ20
λ+2G

C1111
=

√
λ1
C1111

− λ20
C2
1111

(16)
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So ζ = Nm/`m. So size effects in bending are influenced by the coupling parameter; this is
analogous to a parameter δ = N

`b
that was used in an analysis of bending of a circular Cosserat

cylinder [16]. In contrast to Cosserat elasticity, the observed value of C1111 even under uniform
strain will be influenced by the dilatational degrees of freedom [17] [6].

It is also expedient for simplification of bending size effect analysis to define

Nm0 =
λ0
C1111

(17)

Nm1 =
λ1
C1111

(18)

So Nm =
√
Nm1 −N2

m0.
Energy based limits on the elastic constants [7] [17] include those for classical and Cosserat

elasticity as well as a0 > 0, λ1 > 0, and

3λ+ 2G− 3
λ20
λ1

> 0 (19)

The last expression Eq. 19 may be written 1
3
1+ν
1−ν >

N2
m0

Nm1
or Nm1 > 31−ν

1+νN
2
m0. For Poisson’s

ratio 0.3, the energy based limit implies Nm1 > 1.62N2
m0. Because λ = B − 2

3G, Eq. 19 may also

be written in terms of the bulk modulus B, B − λ20
λ1
> 0.

4 Void elasticity

Cosserat elasticity incorporates sensitivity to gradients of rotation by virtue of the coupling be-
tween rotations and stresses. It is also possible to supplement classical elasticity with sensitivity
to gradients of dilatation alone via a generalized continuum theory containing a local dilatation
variable suggested to be associated with void volume change [6]. In contrast to Cosserat and
microstretch elasticity there is no local rotation variable and no sensitivity to rotation gradient.
This theory incorporates three elastic constants in addition to the usual two of classical isotropic
elasticity. There is also a rate parameter that is omitted here because viscoelastic behavior can
be incorporated in any generalized elasticity theory using the elastic viscoelastic correspondence
principle which allows solutions to viscoelasticity problems to be obtained from known solutions of
elasticity problems via Laplace or Fourier transforms [18] [19]. The constitutive equations for an
isotropic material at constant temperature are:

σij = 2Gεij + (λεkk + βvφ)δij (20)

hi = αvφ,i (21)

g = −ξφ− βvεkk (22)

Cowin [6] uses α as a void elastic constant but that symbol is already used as a Cosserat
constant (Eq. 2), so here it is called αv. Similarly βv is used for void theory to distinguish it from
the Cosserat constant β. Comparing Eq. 20 and Eq. 10, via uk,k = εkk, the classical constant
λ is seen in both; also, λ0 = βv. Cosserat type constants are present in microstretch elasticity
and absent in void elasticity. Comparing Eq. 22 and Eq. 12, there is a factor -3 difference on
the left side. We already have λ0 = βv so the factor -3 cannot be in λ1; it must be in g. One
may presume that microstretch internal traction λk is the same as void equilibrated stress vector
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hi; similarly it appears that microstretch equilibrated body force s in Eq. 12 corresponds to void
intrinsic equilibrated body force g in Eq. 22. If that were the case, factors of 3 would appear
in λ0 and λ1 compared with βv and ξ. That would contradict the correspondence for the elastic
constants from Eq. 20 and Eq. 10. So to avoid contradictions in elastic constants, we make the
correspondences 3s = −g and αv = 3a0.

An alternate coupling coefficient [20] which may be expressed Nc = β2
v
ξ

1
C1111

obeys 0 < Nc < 1;

it may also be written Nc =
N2

m0
Nm1

.
Aside from the difference in symbols (Table 1), the void theory is equivalent to microstretch

elasticity with the Cosserat type constants α, β, γ, κ set to zero. A comparison of symbols for
Cosserat elasticity was given in Ref. [21].

Table 1: Symbols used by various authors.

Parameter Eringen[7] Cowin[6] Iesan[17]

Dilatation gradient sensitivity a0 αv/3 σ
Micro-stretch modulus λ0 βv η

Internal modulus λ1 ξ b
Micro-inertia j 2

3k -

5 Predictions and experiments

5.1 Cosserat elasticity

The Cosserat theory has been explored the most extensively. For example, a size effect is predicted
in the torsion [15] and bending [16] of circular cylinders of Cosserat elastic solids. Thin cylinders
are more structurally rigid than expected classically. A stiffening-type size effect is also predicted
in the bending of plates [15]. No size effect is predicted in tension. By contrast, in classical elastic
solids, there is no size effect in torsion or bending; structural rigidity is proportional to the fourth
power of the radius. Detailed plots of size effects are available [15] [16] so they are omitted here.
Size effects of large magnitude are possible in torsion if N → 1 or if Ψ is well below its upper limit
of 1.5.

The stress concentration factor for a circular hole in a thin Cosserat plate is smaller than the
classical value, and small holes exhibit less stress concentration than larger ones [22]. By contrast,
the classical stress concentration around a hole is independent of hole size. Strain is redistributed
in other situations as well. For example, warp in torsion of a bar of rectangular cross section is
less in a Cosserat elastic solid than in a classical elastic solid [23]. The deformation in bending
is also altered in Cosserat solids: sigmoid curvature of the lateral surfaces of square cross section
bars of Cosserat solids is predicted [24]. As for plane waves in a Cosserat solid, shear waves travel
faster at higher frequency; longitudinal waves propagate without frequency dependence. There is
no prediction of a cut-off frequency for any waves in Cosserat elasticity.

5.2 Void and microstretch elasticity

We consider these theories together because microstretch elasticity is a superposition of void elas-
ticity and Cosserat elasticity. Some predictions are available for void and microstretch theories.
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As for tension / compression, analysis of a uniform stress field reveals that the effective con-
strained modulus is reduced by the presence of the void degree of freedom [6]; specifically

Ceffective1111 = C1111 − (
λ20
λ1

) = C1111(1−
N2
m0

Nm1
) (23)

The modulus that would be observed in an experiment is Ceffective1111 . It is claimed [6] that one can
measure some of the additional elastic constants if the experimenter has an independent method to
measure the volume change associated with voids. The difficulty with such an approach is that one
cannot necessarily assume that the void / local dilatation degree of freedom in the continuum theory
corresponds directly to the concentration of physical voids in a laboratory specimen. Indeed, these
generalized continuum degrees of freedom were explored in a homogenization analysis [7] [25] of a
mass-spring system in the study of waves; there are no voids in a mass-spring system. Tension was
also studied analytically in microstretch elasticity [17]. As is the case with Cosserat elasticity, size
effects are predicted not to occur in tension. The predicted effective Young’s modulus in tension is
reduced by the microstretch variables [17] so the classical moduli no longer have the same meaning
as in classical or Cosserat elasticity. Similarly the Poisson’s ratio is changed by the microstretch
variables [17]. This situation is analogous to the use [4] in Cosserat elasticity of µ+κ/2 to represent
the shear modulus G observed in the absence of gradients. The difficulty with such notation is that
µ is used in elasticity theory to represent the observed shear modulus and it no longer represents the
shear modulus when used as above. We avoid the potential for confusion by using G to represent
the shear modulus in Cosserat elasticity.

Size effects arise due to sensitivity to dilatation gradient [6]. Size effects are predicted in bending
but not in torsion. This bending analysis [6] allowed surface tractions on the lateral surfaces, so it
does not represent an exact solution for bending. It is not obvious whether the size effect represents
stiffening or softening. Stress concentration around a small hole is predicted to be larger than for
a large hole [26] and the stress concentration factor is larger than the value predicted by classical
elasticity. This is the opposite effect of Cosserat elasticity. Too, the velocity of longitudinal waves
increases with frequency but shear waves are not affected. The generalized continuum theory of
voids is in contrast to the classic Biot theory [27] which analyzes the stress-induced pressure and
flow of fluids between communicating pores in the solid. Void theory does not contain such physics,
but it does allow sensitivity to gradients.

Void theory predicts bending size effects [6] for a bar of width h; the result of the approximate
analysis is here considerably simplified in terms of a dimensionless ratio J . A length parameter
`0 = `m

Nm
with Nm =

√
Nm1 −N2

m0 as above was used the analysis [6].

J =

(
N2
m0

Nm1 − N2
m0

)(
1− 2ν

1 + ν

)(
1− 3

(
`0
h

)3( h
`0
− tanh

(
h

`0

)))
(24)

The rigidity ratio Ω is the ratio of bend rigidity in void elasticity to bend rigidity in classical
elasticity.

Ω =
1− J

1− 1
2J(1 + ν)

(25)

Stiffening size effects in bending are possible as shown in Fig. 1. Curves are for ν = 0.3,
Nm0 = 1; Nm1 = 1.65, 2, 3.

7



Figure 1: Bending size effect for void theory; normalized rigidity Ω vs. normalized specimen
thickness h

`m
, for ν = 0.3, Nm0 = 1; Nm1 = 1.65, 2, 3.

Figure 2: Bending size effect for void theory; normalized rigidity Ω vs. normalized specimen
thickness h

`m
, for ν = 0.3, Nm0 = 10; Nm1 = 165, 200, 300.

Size effects are not of large magnitude in this series, even for elastic constants approaching the
stability limit of Eq. 19. This is in contrast with Cosserat elasticity in which large size effects are
possible and are observed.

If larger N values are assumed, Nm0 = 10; Nm1 = 165, 200, 300, corresponding to λ0 larger than
C1111, size effects are shown in Fig. 2. Again, size effects are not of large magnitude, in contrast
with Cosserat elasticity. All size effects explored within this solution entail increasing apparent
modulus as thickness is reduced.
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The lowest of the size effect curves corresponds to ratios of elastic constants approaching the
stability limit, Eq. 19, but the stiffness does not tend to zero anywhere. The limit from the
denominator in Eq. 24 to be positive and nonzero is Nm1 > N2

m0. This is less stringent than the
energy limit Eq. 19 for Poisson’s ratio 0.3; for Poisson’s ratio 0.5 they are equivalent.

The nature of the instability mode must be found elsewhere. The void theory stability limit of

Cowin [6] 3λ+ 2G− 12β
2
v
ξ > 0 differs from that of Eringen [7], Eq. 19 by a factor of four in the last

term. The origin of the disparity is unknown.
As for microstretch elasticity, a complicated exact solution for tension and for bending of a

circular cylinder was presented [17]; this is much more complicated than the corresponding exact
solution [16] for bending in Cosserat elasticity. It is not obvious whether this microstretch size
effect represents stiffening or softening.

5.3 Determination of Cosserat elastic constants by experiment

Measurements of torsional size effects is sufficient to demonstrate the presence of Cosserat effects
because there is no dilatation or dilatation gradient; void elasticity predicts no size effects in torsion.
If the material is a Cosserat solid or a microstretch solid, torsional size effect measurements, if done
over a sufficient range in specimen diameter, allow extraction of four of the elastic constants,
specifically the shear modulus G, characteristic length in torsion `t, coupling number N and polar
ratio Ψ. One obtains G via a pure shear test without gradient or a torsion test on a sufficiently large
specimen or from an asymptote at large diameter in torsion size effect curve. The characteristic
length `t is obtained via size effects in torsion of rods of different radius r for relatively large
specimens via the approximate solution for the rigidity ratio

Ω ≈ 1 + 6(`t/r)
2 (26)

The full Bessel function solution [15] is required to obtain N from size effects on smaller spec-
imens and also Ψ from yet smaller specimens. Such inference is valid for a Cosserat solid or a
microstretch solid; there is no dilatation in torsion, hence no effect of dilatation gradients. If the
material is a Cosserat solid, Young’s modulus E can be obtained from simple tension or compression
experiments or from or from an asymptote at large size in a bending size effect curve. Bending of
a plate to a cylindrical shape via controlled moments on all edges reveals `b independently of other
constants provided one bends plates of various thickness [15]. Bending of the same circular rod
used for torsion can also be used to obtain `b with confirmation of N via a somewhat more complex
procedure using a solution [16] containing Bessel functions. So, for Cosserat solids, measurement of
size effects in both bending and torsion suffice to determine all six elastic constants. If the material
is a microstretch solid, then bending size effects will contain a Cosserat (rotation gradient) and a
dilatation gradient contribution; there are then too many elastic constants to extract them from a
single curve.

Cosserat elastic effects have been observed experimentally. Torsion and bending studies on
closed cell foams [28], [29] and of compact bone [30] reveal size effects consistent with Cosserat
elasticity. The apparent modulus increases substantially as the specimen diameter becomes smaller.
This is in contrast to the predictions of classical elasticity. For dense (340 kg/m3) closed cell
polyurethane foam [28], E = 300 MPa, G = 104 MPa, ν = 0.4, `t = 0.62 mm, `b = 0.33 mm, N2 =
0.04, Ψ = 1.5. The cell size is from 0.05 mm to 0.15 mm. For dense (380 kg/m3) polymethacrylamide
closed cell foam (Rohacell WF300) [29], E = 637 MPa, G = 285 MPa, `t = 0.8 mm, `b = 0.77 mm,
N2 ≈ 0.04, Ψ = 1.5. The cell size is about 0.65 mm. The Cosserat characteristic length was also
determined in a (two dimensional) polymer honeycomb [31].
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Full field measurements of deformation of square section bars in torsion have been conducted
to ascertain the predictive ability of Cosserat elasticity. Warp of a bar of rectangular cross section
in torsion is predicted to be reduced in a Cosserat elastic solid [23]. The corresponding strain
field was observed in compact bone [32]; the non-classical effects observed were in agreement with
predictions based on Cosserat constants obtained from size effects observed in separate experiments
on circular cylinders. Deformation spills over into the corner of the square section where it would
be zero in classical elasticity [33] as revealed by holography. Such strain redistribution ameliorates
concentration of strain. Strain at the corner of the section entails asymmetry of the stress as is
predicted by Cosserat elasticity. The corresponding reduction of warp deformation of square section
bars of dense foam has been observed via holography [34]. The strain field in bending is also altered
in Cosserat solids. Sigmoid curvature of the lateral surfaces of bent square cross section bars of
open cell foam was observed experimentally and predicted theoretically via Cosserat elasticity [24].

Wave methods could be used for Cosserat solids provided the material has minimal viscoelastic
damping. In viscoelastic materials, the dispersion (frequency dependence of velocity) increases with
damping. Cosserat elasticity predicts increase of shear wave velocity with frequency [4]; dispersion
due to viscoelasticity would be a confounding variable.

5.4 Determination of microstretch elastic constants by experiment

No known experimental results are available for void or microstretch elasticity. However homog-
enization analysis of a one dimensional mass-spring system was used to calculate the dilatation
elastic constants [25] and homogenization analyses of lattices of ribs are available for Cosserat elas-
ticity. In this section the prospects for such experiments are explored. Void elasticity predicts size
effects in bending but not in torsion. At first sight such an observation would appear as a clear
signature of a void elastic solid, i.e. a microstretch solid with dilatational degrees of freedom but
not rotational degrees of freedom. However such an effect could also occur in a Cosserat solid
(Eq. 2) if β/γ = -1, the lower limit allowed by energy considerations. If there is reason to infer a
larger β/γ, either from the shape of the bending size effect curves or from comparison with other
experiments or from homogenization analysis, then a microstretch dilatation gradient contribution
is to be suspected. Such size effects do not suffice for the calculation of all the elastic constants of
a microstretch solid; there are too many constants to extract from one curve.

Configurations sensitive only to dilatation gradient, not to rotation gradient, are available.
For example static pressurization of a hollow cylinder or sphere will generate a gradient in strain
without the rotations that would drive Cosserat effects. Solutions are available for the cylindrical
and spherical thick wall pressure vessel problems for a material obeying void elasticity [35]. The
stress field is not affected by the void degrees of freedom but the displacements are altered giving
rise to a larger structural compliance. Curiously the gradient sensitivity parameter αv hence the
characteristic length, does not enter the final solution for the displacements. So the reduction in
structural rigidity is similar to that predicted (Eq. 23) for uniform compression, in that there is a
change in effective stiffness but no gradient sensitivity parameter αv. The classical displacement
field for the hollow sphere contains r and 1/r2 terms with the latter coupled via the shear modulus.
The void contribution to displacement contains only an r term; similarly the dilatation variable
φ is independent of r. This is not promising for experiments based on size effects. In any case,
experiments of this or related type are likely to be more difficult than bending or torsion, particularly
if the specimen is porous and permeable as with open cell foams.

The presence of dilatation sensitive elastic effects may be studied with waves. As with void
theory, microstretch elasticity admits two kinds of longitudinal waves [25]. A cut off frequency phe-
nomenon is predicted: at sufficiently high frequency, the wave speed drops to zero. Viscoelasticity

10



cannot account for such an effect; the effect of viscoelasticity is an increase of wave speed with
frequency. Beyond the cut off frequency, no waves propagate. The cut-off angular frequency is

ωcr =
√

2λ1
ρj with j as micro-inertia and ρ as density [25]. While it is suggested that measurement

of this frequency enables extraction of the elastic constant λ1, the micro-inertia is not known a
priori. It has dimensions of length squared. The constant λ0 is also needed to interpret size effect
studies; the wave cut off frequency has λ1 but does not reveal λ0 or a0 which provides sensitivity to
gradient of local dilatation. Experimental results are available for dispersion and cut off frequencies
in open cell foam [36]. These experiments were interpreted in the context of structural vibration of
cell ribs and also via [5] microstructure elasticity. Cut off frequencies were not sufficient to deter-
mine generalized continuum elastic constants. The shape of the longitudinal speed vs. frequency
curve might be studied as a way to obtain several constants; the curve depends on four constants,
the three dilatational elastic constants and the micro-inertia. Mindlin [5] and Cowin [20] present
further detail regarding waves. There are two kinds of longitudinal waves corresponding to acoustic
and optical branches observed in crystals. If it is possible to observe both waves, then it might be
possible to extract elastic constants. Biot theory [27] also allows two kinds of longitudinal waves.
Biot type slow waves have been observed in synthetic [37] and in natural [38] liquid filled perme-
able materials. Biot slow waves depend on fluid-solid interactions in permeable materials. Waves
predicted in void elasticity, by contrast, will occur in a solid material with no fluid in any pores.
By removing any fluid from the pores, one may distinguish the origin of the waves. Even so, thus
far no experiments with a microstretch interpretation to determine elastic constants are known on
physical materials.

6 Conclusions

Cosserat elasticity may be demonstrated and four of the six elastic constants extracted via torsion
modalities independently of any dilatation gradient sensitivity the material may have. No compa-
rable quasi-static modality for void elasticity has emerged. In Cosserat solids, methods are known
and have been applied to obtain all six elastic constants via quasi-static experiments. Wave meth-
ods may be appropriate for both Cosserat and microstretch solids provided viscoelastic dispersion
is not too large. Microstretch elasticity, which includes sensitivity to gradients of rotation and of
dilatation could account for bending effects larger than those of Cosserat elasticity.
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