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Abstract

A dense closed cell foam is studied to determine which continuum theory of elasticity is applicable.
Size effects inconsistent with classical elasticity are observed. The material exhibits a characteristic
length scale considerably larger, by more than a factor 6, than the largest observable structure size. The
Cosserat coupling number N is shown to be small, via measurements of size effects in square section bars,
comparison with size effects in round section bars, and determination of warp of a square section bar in
torsion. For this material, the couple stress theory is excluded and the modified couple stress theory is
excluded. Theories that force constants to their thermodynamic limits do not apply to this foam. The
role of other generalized continuum theories is considered.

Keywords Elasticity - Cosserat - micropolar - generalized continuum

1 Introduction

In classical elasticity there is no length scale in the theory. Any length scale associated with microstructure
in the material under study is therefore neglected. If the microstructure is sufficiently small compared with
the length scale of the experiment, classical elasticity is entirely adequate. When the nature and size of the
microstructure cannot be neglected, generalized continuum theories may be considered. Cosserat elasticity
is a generalized continuum theory that allows rotation of points as well as translation; couple stress as well
as stress [1, 2, 3]. It is not the only generalized continuum theory but from the perspective of experiment
it is expedient to use it because analytical solutions for interpretation of experiments are available [4] [5] [6]
[7] [8].

The constitutive equations for linear isotropic Cosserat elasticity [3] are:

σij = 2Gεij + λεkkδij + κeijk(rk − φk) (1)

mij = αφk,kδij + βφi,j + γφj,i (2)

The stress σij can be asymmetric in a Cosserat solid. The moment from the asymmetric stress is balanced
by a couple stress, mij . Gradients in the rotation φi of points give rise to distributed moments. The macro-
rotation rk = 1

2eklmum,l based on the antisymmetric part of gradient of displacement ui need not equal the
rotation of points; ejkm is the permutation symbol.

There are six independent elastic constants for an isotropic Cosserat solid. Constants λ, G have the
same meaning as in classical elasticity. Constants α, β, γ provide sensitivity to rotation gradients and κ
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quantifies the coupling between macro and micro rotation fields. Technical constants, derived from these
elastic constants are beneficial for physical insight. The technical elastic constants are: Young’s modulus
E, shear modulus G, Poisson’s ratio ν, characteristic length, torsion `t, characteristic length, bending `b,
coupling number N , polar ratio Ψ:

E =
2G(3λ+ 2G)

2λ+ 2G
(3)

G (4)

ν =
λ

2(λ+G)
(5)

` =

√
β + γ

2G
(6)

`b =

√
γ

4G
(7)

N =

√
κ

2G+ κ
(8)

Ψ =
β + γ

α+ β + γ
(9)

The physical meaning of the classical constants E, G, ν is well known. In a Cosserat solid these are
the constants measured in the absence of gradients in deformation. The characteristic lengths `t and `b are
based on ratios of rotation gradient sensitivity to classical elastic constants. They represent the length scale
at which deviations from classical elasticity become notable. They need not correspond to structural length
scales in the material. Experiment and homogenization studies reveal the characteristic length may be zero,
smaller than the structure size, or larger than the structure size. The coupling number N is a dimensionless
measure of the coupling between the rotation field and the displacement field. The range based on energy
considerations is from zero to 1. Nonclassical effects are larger in magnitude for large N than for small N .
The polar ratio Ψ is analogous to Poisson’s ratio in classical solids.

Some particular cases are known. If one assumes for simplicity, after Koiter [9], that the macrorotation
and microrotation vectors are equal, then in Cosserat elasticity, N = 1, or equivalently κ→∞. This case is
called couple stress elasticity which has four elastic constants; the nonclassical ones correspond to `t and `b
in the Cosserat case. Some more recent authors, e.g. [10], have reintroduced variants of couple stress theory.
In one such version [11], there is only one nonclassical constant, a characteristic length which we call `y to
distinguish it from other lengths.

Various authors define the characteristic length differently. For example a bending Cosserat characteristic

length is defined [4] as `g =
√

(1− ν2) γE or is defined [5] as `k =
√

γ(2G+κ)
4Gκ = `b/N . In couple stress elasticity

[9] the characteristic length for bending is called `; size effects in torsion are expressed in terms of ` and a
ratio η.

To interpret the couple stress length `y consider a plate bending example in Cosserat elasticity [4]. The
bending rigidity ratio for a plate of full thickness h, is Ω = [1 + 24(1 − ν)(`b/h)2]. The rigidity ratio is the
ratio of structural rigidity observed for a given thickness to the rigidity for asymptotically large thickness
in which strain gradients tend to zero. For modified couple stress theory, the plate bending rigidity ratio is
Ω = [1 + 6(1 − ν)(`y/h)2]. So `y = 2 `b, which corresponds to assuming in a Cosserat solid that β/γ = 1.
Also, the rigidity ratio for torsion of a Cosserat elastic circular rod of radius r, Ω = 1 + 6(`t/r)

2 for N =
1. An expression identical to the Cosserat N = 1 case was given for modified couple stress elasticity [11]
in which `y = `t. A similar expression in terms of a bending length and a dimensionless ratio is given for
couple stress elasticity [9].

So, modified couple stress theory entails β
γ = 1 and N = 1. Couple stress theory entails N = 1 but allows

a range of ratio of characteristic length in bending to that in torsion.
As for the asymptotic rise in the Cosserat rigidity for small width it has been suggested [12] that one

choose limiting values of some Cosserat constants to prevent divergence of the structural rigidity for small
specimen width. For example Ψ = 1.5 (its upper bound) gives rise to a finite intercept on the ordinate of
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a plot of normalized structural rigidity vs. size for torsion and β
γ = ±1 (the upper or lower bound) gives

rise to a finite intercept on the ordinate for bending. This corresponds to a restricted version of Cosserat
elasticity which differs from the restriction of couple stress elasticity, which entails divergence of the rigidity
for small width.

If the solid has no more freedom than that of a Cosserat solid, and possibly less, then it is straightforward
to determine by experiment which theory applies. The values of characteristic lengths `t and `b are deter-
mined by size effect experiments in torsion and bending respectively. If there are no measurable size effects,
the material may be described as classical. If nonzero characteristic lengths are inferred from experiment,
the ratio of these lengths gives β

γ via

`2t
`2b

= 2(
β

γ
+ 1) (10)

One can also extract β
γ from the sigmoid curvature of the lateral surfaces in bending of a square cross

section bar [6]. The value of N may be determined from the shape of the size effect curve for small specimens.
Cosserat elastic effects have been studied in a variety of materials. A composite with spherical inclusions

was found to have a characteristic length of zero and to be classical [4]. Cosserat effects have been observed
in bone, foams [13] [14] [15] and lattices [16]. Characteristic lengths were comparable to the structure size.
A non-cohesive granular assembly of metal spheres was studied via waves [17]. A value of κ was inferred but
characteristic lengths were not obtained. Homogenization analysis of chiral honeycombs revealed a Cosserat
characteristic length comparable to the cell size [18]. Planar bars with an array of circular holes exhibited
size effects [19]; a Cosserat characteristic length in bending was found to be on the order of the hole spacing.

A dense polyurethane foam [13] was studied for Cosserat effects via size effect measurements on round
specimens. Elastic constants were found to be E = 300 MPa, G = 104 MPa, ν = 0.44, `t = 0.62 mm, `b =
0.327 mm, N = 0.2, Ψ = 1.5. The density was 340 kg/m3; the foam was closed cell with cells of diameter
from 0.05 to 0.15 mm. Results and curve fits were plotted in the form rigidity divided by diameter squared
vs. diameter squared because the tangent of such a plot gives an intercept on the abscissa which corresponds
to the characteristic length.

In the present research, this dense foam was studied further in square section specimens with the aim of
exploring the consequences of weak coupling. To that end, specimens of square cross section are examined
via size effects and study of warp deformation.

2 Methods

2.1 Materials

The material under study is high-density rigid polyurethane closed-cell foam. The material, called last-a-
foam, is commercially available [20]; it is used for composite panel cores, flotation devices and other uses. The
variant used, FR3720, with nominal density 20 pounds per cubic foot, was chosen because the mechanical
properties were stated to be isotropic at this density based on manufacturer specifications. The material
as received was a block 22.2 mm by 190 mm by 178 mm. The density of specimens for the square section
size effect study was 361 kg/m3. Typical microstructure is shown in Figure 1. On visual examination the
heterogeneity is not obvious. The largest cells, about 0.15 mm in diameter, barely exceed the near point
resolution of the human eye. The foam may therefore be referred to as microcellular. Specimens were
prepared by initial rough cutting followed by abrasive machining using abrasive paper.
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Figure 1: Dense polyurethane foam, optical image. Scale mark, 0.25 mm.

2.2 Size effects and interpretation

Size effect studies were done using broadband viscoelastic spectroscopy (BVS). Briefly (for more details, see
[16]), the method makes use of a Helmholtz coil to apply torque to a magnet fixed to the specimen. Angular
deformation is measured via a laser beam reflected from a small mirror attached to the specimen, upon a
position sensitive silicon detector. Torque is inferred from the current in the coil. The torque channel is
calibrated by tests on 6061 aluminum alloy which has well known properties. Both torsion and bending
measurements can be done on the same specimen without any friction. All tests were done at a frequency 1
Hz; the frequency range of the instrument is from micro-Hertz to 100 kHz.

Size effects for round specimens in torsion were interpreted using the following exact solution [4] for a
Cosserat elastic circular rod of radius r. The size effects are expressed as Ω, the ratio of structural rigidity
to its classical counterpart:

Ω = (1 + 6
{`t
r

}2
)

[
1− 4

3Ψχ

1−Ψχ

]
(11)

Here χ = I1(pr)/prI0(pr), p2 = 2κ/(α + β + γ) and I0 and I1 are modified Bessel functions of the first
kind; `t is the characteristic length in torsion; N is the coupling number. The torsional rigidity in classical
elasticity is M

θ = G[π2 r
4]. G is the true shear modulus in the absence of gradients, M is the applied moment

and θ is the angular displacement per length.
Elastic constants G, `t, Ψ and N were found by fitting Equation 11 to the full set of experimental data

using MATLAB.
Size effects for square specimens in torsion were interpreted using the full solution given in [7] which is

too lengthy to reproduce here. A simpler approximation for small N was tried

Ω =

[
1 +

21ᾱκ̄(89¯̀2 + 363
898

¯̀2
b)

266ᾱκ̄+ 2¯̀2[3255ᾱ(κ̄+ 2) + 4259κ̄] + 33¯̀2
b [945ᾱ(1 + κ̄/2) + 499κ̄]

]
. (12)

with ¯̀= `t
a ; ¯̀

b = `b
a ; κ̄ = κ

G ; ᾱ = α
a2G and a as the bar half width. Inferred elastic constants were similar to

those from the full solution, but the full solution was superior in that the fitting was better.
Bending of round sections was interpreted via an exact expression [5] for a Cosserat elastic circular rod

of radius r:

Ω = 1 + 8(
`b
r

)2
(1− (βγ )2)

(1 + ν)
+

8N2

(1 + ν)

[
(βγ + ν)2

ζ(δr) + 8N2(1− ν)

]
(13)
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Here δ = N/`b and ζ(δr) = (δr)2[((δr)I0((δr))−I1((δr)))/((δr)I0(δr)−2I1(δr))]. The Young’s modulus E
and Poisson’s ratio ν were determined from compression testing. Constants `b, β/γ, and N were determined
from fitting the experimental results with Equation 13. The corresponding rigidity in classical elasticity is
M
θ = E[π4 r

4].

2.3 Warp, rotation and interpretation

Warp of the cross sections in a square section bar is of interest because warp [7] depends on `t and N but in
contrast to size effects, is not very sensitive to Ψ. Also, warp entails a concentration of strain; concentrations
of stress and strain including those around holes are reduced in a Cosserat solid [8]. Such concentrations of
strain are of practical interest because they render the material more vulnerable to fracture where the strain
is highest.

The torsion deformation field is ux = −θzy, uy = θzx, where θ is the twist angle per unit length.
The warp of a classical solid is given by a double Fourier series [23] but can be well approximated [7] by
uz(x,y)
θa2/16 = 5(x3y − xy3) + 33

38 (x5y − xy5) in which 2a is the bar width. For a Cosserat solid with κ → ∞,

corresponding to coupling number N = 1, the full warping displacement expression reduces to the following
[7], in which ¯̀= `t

a and ¯̀
b = `b

a with 2a as the bar width:

uz(x, y)

θa2/16
=

10
(
38 + 2211¯̀2 + 2772¯̀2

b

)
(x3y − xy3) + 33

(
2− 315¯̀2

)
(x5y − xy5)

4
(
19 + 465¯̀2 + 990¯̀4

)
+ 742.5

(
6 + 49¯̀2

)
¯̀2
b

. (14)

Cosserat effects result in a reduction of the warp below classical values. There is more reduction as `t
increases; `b has a modest effect on the curve shape. As N is decreased from 1, warp increases proportionally
until the classical value is reached for N = 0. Consequently if N is small the warp is predicted to differ little
from the classical curve.

In the present study, warp was inferred from rotation. Warp can be measured directly via optical methods
such as image analysis or holographic interferometry, however in view of the small thickness of the specimen
and the smallness of displacement due to warp compared with displacement due to twist, the rotation
approach was considered expedient. Two rotation stages (Newport type 472) with resolution 0.02◦ were
mounted on an optical table and the specimen was cemented at each end to the center points of each stage.
A specimen, 8 mm square cross section and 100 mm long was aligned horizontally and cemented between
the stage centers. Small mirrors 6 mm square were cemented via slender stalks at several locations on the
specimen lateral surface to measure rotation. The rotation about the x axis is

r1 =
1

2
(e123u3,2 + e132u2,3) (15)

with u as displacement and e as the permutation symbol.
The rotation about the z axis is

r3 =
1

2
(e312u2,1 + e321u1,2). (16)

Substituting the displacement field in Equation 15,

r1 =
1

2
(
∂uz
∂y
− θx) (17)

The first term in r1 represents the slope of the warp curve and the second term is due to the twist. The
twist rotation is r3 = θz with z as the distance from the fixed end. The ratio of rotations r1

r3
= f az is equal

to the ratio of deflection distances of the laser beam. At the specimen edge, f = 0.92; at the center of the
top surface, 0.37 if it is classically elastic.

As for prediction of warp and rotation effects based on elastic constants from size effects, if `t / width
= 1/8 corresponding to `t = 1 mm, and if N = 1 then the slope of the warp curve is 0.56 of the classical
value at the specimen edge, and 0.69 of the classical value at the center of the lateral surface. Because the
rotation also has a contribution from the twist, the corresponding ratios of rotation, Cosserat to classical are
0.78 at the edge and 1.17 at the center. If, however, N = 0.2, then the rotation changes only about 4% from
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classical; for N = 0.1, only 2% different. So the size effect measurements that imply a small N , predict the
rotation to be very close to the classical value despite the large characteristic length.

To measure two components of rotation, a laser beam was diverged and focused, then reflected from the
mirror on the specimen and projected upon a screen or upon a position sensitive silicon detector. The bar
was subject to torsion by rotating the stages in opposite directions. Correction for bending due to imperfect
alignment was done by rotating both stages in the same direction to achieve rotation without twist, and
measuring the rotation. In further experiments intended to eliminate the need for such correction, tests were
done in which one end of the specimen was coupled to the rotation stage by a layer of rubber 6 mm thick,
then one stage was rotated. Error estimates were based on uncertainty in orthogonality and alignment and
on variance of results from multiple experiments.

2.4 Ultrasound

Ultrasonic studies were conducted to explore anisotropy. A block of foam 22.2 by 22.8 by 65.2 mm was
subjected to tone burst waveforms input from a signal generator (Tektronix AFG 3051C) to a broadband
transducer (Panametrics V102 longitudinal; V153 shear) of natural frequency 1 MHz. A similar transducer
was used to detect the waves; the signal was input to a digital oscilloscope (Tektronix DPO 3014). Longi-
tudinal and shear waves at frequencies from 1 MHz to 0.3 MHz were used. Wave velocities were calculated
from pulse travel time and specimen thickness. Moduli were inferred from the velocity and density.

3 Results

3.1 Size effects

Size effects in torsion of a square cross section bar are shown in Figure 2. The rigidity ratio Ω is the ratio
of observed structural rigidity to the asymptotic value for large thickness in which gradients tend to zero.
Observed size effects are modest in magnitude compared with effects found in low density open cell foams
and in lattices and are similar to those found in round specimens of dense foam. Inferred elastic constants
were found to be

G = 109MPa, `t = 1.08mm,N = 0.12,Ψ = 1.49856 (18)

The goodness of fit was R2 = 0.999977. Torsional size effects for square section bars have minimal dependence
[7] on `b; a value of 0.327 mm was input. It is not surprising that the modulus differs somewhat from that
of the round specimen series because the batch of material, albeit of similar density, was different.
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Figure 2: Size effects in torsion of a square cross section bar. Rigidity ratio Ω vs. width. Points are
experimental. Curve fit is based on the full solution for a square section. For a classical solid, Ω = 1
independent of diameter.

The inferred value of `t is larger than was found earlier for the round case and N is smaller, therefore the
original torsion data for round sections were re-plotted and refitted using MATLAB. Results assuming Ψ =
1.5 and `t = 0.6 mm are shown in Figure 3. The fit resulted in G = 104 MPa and N = 0.196, almost identical
to the original value 0.2. The goodness of fit was R2 = 0.94. The original curve fits were done to achieve
a consistent set of constants for both torsion and bending. Because of limitations in available software the
original fits were done assuming Ψ at widely spaced discrete values. The elastic constants inferred assuming
Ψ = 1.5 are similar to the ones obtained originally.
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Figure 3: Size effects in torsion of a round cross section bar. Rigidity ratio Ω vs. diameter. Points are
experimental. Curve fit is based on the exact solution for round section assuming Ψ = 1.5. For a classical
solid, Ω = 1 independent of diameter as indicated by the horizontal dashed line.

Further analyses of round specimen size effects were done allowing Ψ to vary in fine increments of 0.001.
A value of Ψ slightly smaller than 1.5 resulted in inferred values from round section data much closer to
those found in the present study for square sections (Figure 2) as shown in Figure 4. The corresponding
elastic constants are

G = 104MPa, `t = 0.9mm,N = 0.152,Ψ = 1.493 (19)

The goodness of fit was R2 = 0.949, slightly higher than that for Ψ = 1.5. Because the curve shape
depends on several parameters, a range of values allows fitting with similar quality. Results for round and
square sections indicate `t ≈ 1 mm, Ψ approaching but below its upper limit 1.5, and N small, from 0.12
to 0.15; with modest quantitative differences. If, however, one assumes the constants found from the square
section (with N free) as input to a fit for the round section data, then N = 0.144 and R2 = 0.65. The
difference between the round section and square section specimens is therefore likely real, for the following
reasons.

Foams differ from lattices in that foams have a surface layer of incomplete cells. There may also be
surface damage due to the machining process. Such damage reduces the rigidity of specimens, especially
small ones, so it reduces the inferred characteristic length below the actual value. The damage may differ
depending on preparation method. Some of the difference between round and square specimens is attributed
to such phenomena.

For foams [22], neglecting effects of air in the cells, as is appropriate for a stiff foam, the foam Young’s
modulus E is

E

Es
= Cf [

ρ

ρs
]2, (20)

in which ρs is the density, Cf is a constant of value near one, and Es is the modulus of the solid material of
which the foam is made. Assuming for stiff polymer a solid density of 1100 kg/m3 and Cf = 1, then given
the density of the present foam, if E = 300 MPa, the value actually originally inferred for the asymptotic
modulus, then the solid phase Es = 3.14 GPa, which is reasonable for a glassy polymer. This foam is too
dense for its structure to be viewed as an assemblage of ribs or plates in bending; even so, the quadratic
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dependence on density is experimentally observed even as the density approaches that of the solid material
[22]. Therefore the Young’s modulus of the present foam is reasonable in the view of the known behavior of
similar materials.

Figure 4: Size effects in torsion of a round cross section bar. Rigidity ratio Ω vs. diameter. Points are
experimental. Curve fit is based on the exact solution for round section with Ψ allowed to freely vary. For
a classical solid, Ω = 1 independent of diameter as indicated by the horizontal dashed line.
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Figure 5: Size effects; theoretical dependence of torsion rigidity ratio Ω vs. diameter upon Ψ for N = 0.2
and `t = 1 mm. From top down, Ψ = 1.0, 1.45, 1.49, 1.499, 1.5. For a classical solid, `t = 0 so Ω = 1
independent of diameter as indicated by the horizontal dashed line.

Observe (Figure 3) that Ψ at its upper limit 1.5 gives rise to an intercept of the curve vs. diameter to a
finite value of the rigidity ratio Ω. If Ψ < 1.5 then the curve tends to infinity near the origin; as Ψ → 1.5,
the asymptotic rise becomes closer to the origin (Figure 5). Such a singularity need not present problems
experimentally because in real materials one cannot prepare meaningful specimens smaller than the smallest
microstructure.

As for other generalized continuum theories, if one forces N = 1 as in couple stress elasticity, the fit is
poor with R2 = 0.003. Modified couple stress theory requires β

γ = 1 in addition to N = 1, so that will fit

poorly as well. If one forces a classical elastic interpretation with `t = 0, then R2 = -5.1. Therefore for this
material, Cosserat elasticity is a superior representation compared with couple stress elasticity (including its
restricted form) or classical elasticity.

Specific comparison of the magnitude of effects with other materials is as follows. As for size effects,
the maximum Ω was about a factor 6.5 in low density open cell polymer foam [14], a factor 12 in negative
Poisson’s ratio foam [15] and a factor 36 in a designed lattice [16] compared with less than a factor of 1.4 in
the present dense foam. The difference is associated with the small value of N in the dense foam compared
with large values, 1 or approaching 1, in the open cell foams and lattices. A composite with stiff spherical
inclusions was found to have exhibit no size effects, hence a characteristic length of zero [4]. Homogenization
analysis of composites containing stiff spheres disclosed characteristic lengths of zero [21]. In homogenization
analysis of 2-D chiral honeycomb lattices with slender ribs, the Cosserat characteristic lengths are comparable
to the cell size [18] and N approaches its upper limit of 1.

3.2 Warp and rotation

Warp is expected to be nearly classical if N is small. Size effect measurements indicate Cosserat elastic
behavior with weak coupling, N = 0.12 to 0.15. For such N , the predicted warp does not differ much from
classical values. Warp inferred from measured rotation is via Equation 17. Figure 6 shows normalized warp
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W = uz(x,y)
θa2/16 predicted by classical elasticity and warp predicted by Cosserat elasticity with N = 1 and

with `t = 2a/8. The warp inferred from experimental rotation was nearly classical as shown in the figure.
Specifically, at the edge of the surface, the rotation r1 was 96% ± 3% of classical compared with 97% of
classical for N = 0.15 and 78% of classical for N = 1. At the center of the surface, the rotation r1 was
103% ± 3% of classical compared with 103% of classical for N = 0.15 and 117% of classical for N = 1.
The measurements indicate, assuming a deviation twice the error estimate, N < 0.3. The inference of warp
from rotation is therefore consistent with a small value of N but not with N = 1. To accurately measure
such small values of N from rotation, considerable improvement in accuracy and precision of the rotation
measurement would be required.

Figure 6: Normalized warp W vs. normalized position on the surface of a classical solid and of a Cosserat
solid with N = 1 and with `t = width / 8. Experimental slopes are shown by thick blue dash lines.

3.3 Ultrasonic waves

Ultrasonic measurements revealed a slight anisotropy. Comparisons of torsion and bending behavior based
on Eq. 11 and Eq. 13 are fully applicable only in isotropic materials. Foams, especially compliant foams of
low density, are not necessarily isotropic because during fabrication the cells are formed from expansion of
bubbles under gravity and under partial constraint by mold. Elastic properties of lattices are governed by
their structural symmetry; they are not in general isotropic. For the present foams, ultrasonic measurements
revealed tensorial moduli, in the reduced notation, C11 = 531 MPa, C22 = 557 MPa, C33 = 574 MPa based
on longitudinal waves and shear moduli G1 = 143 MPa, G2 = 151 MPa, G3 = 146 MPa based on shear waves.
The maximum anisotropy ratio was 1.08 for the C modulus and 1.06 for the shear modulus. Moduli are
higher at 1 MHz than those obtained at 1 Hz as is expected in a polymeric viscoelastic material. Damping
calculated from viscoelastic dispersion of a factor 1.38 in shear modulus over a factor 106 in frequency is tan
δ = 0.037, which is reasonable for the polymer solid phase. The Poisson’s ratio obtained from averages of
longitudinal vL and shear wave vs speeds was ν = 0.32 via the following

ν =
1− 2(vs/vL)2

2− 2(vs/vL)2
(21)

Such a Poisson’s ratio is reasonable for this sort of foam [22].
As for the interpretation of C1111 (C11 in the reduced notation) for isotropic elastic materials in relation

to Young’s modulus E, [23]

C1111 = E
1− ν

(1 + ν)(1− 2ν)
(22)

So, at 1 MHz, E = 387 MPa; the ratio with respect to the value at 1 Hz is a factor 1.29, somewhat less than
the ratio for shear; such a difference in viscoelastic dispersion is reasonable.

The slight anisotropy revealed by ultrasonic measurements is pertinent to the use of torsion and bending
results to obtain elastic constants, both in classical elasticity and in Cosserat elasticity. Using the Poisson’s
ratio ν = 0.32 derived from ultrasound and relaxing the isotropic requirement E = 2G(1+ν) (by 9% in view
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of ultrasonic results), the bending data for a circular section yield the following elastic constants, assuming

N = 0.152 from torsion (Eq. 19) and invoking for consistency
`2t
`2b

= 2(βγ + 1) based on the definition of `t

and `b,

Figure 7: Size effects in bending of a round cross section bar. Rigidity ratio Ω vs. diameter. Points are
experimental. Curve fit (solid curve) is based on the exact solution for round section with β

γ allowed to freely

vary. Dashed curve is for β
γ =1. For a classical solid, Ω = 1 independent of diameter as indicated by the

horizontal dashed line.

E = 300MPa, `b = 0.456mm,N = 0.152,
β

γ
= 0.944 (23)

The goodness of fit was R2 = 0.79. If one attempts to force β
γ = 1 then R2 = -1.43, a poor fit because

such an assumption gives rise to an intercept of small magnitude on the ordinate as shown in Figure 7. So
modified couple stress elasticity [11] is inapplicable here too because it assumes β

γ = 1 as well as N =1.
If one assumes only N =1, allowing variation in characteristic length, then the fit yields `b = 3 mm and
predicted rigidity far too high, so a very poor fit: R2 = -109. Consequently, an assumption, following [12],
of limiting values of Ψ and β

γ is inconsistent with torsion and bending results respectively for this material.
Ultrasonic studies reveal more than moduli derived from wave velocity. There was minimal distortion of

the tone burst but the transmitted signal was weak. Signal strength increased as frequency was lowered from
1 MHz. There was no obvious dependence of signal velocity upon frequency (dispersion) in the range 0.3 to
1 MHz. Shear waves were difficult to discern above 0.5 MHz. Cut-off frequencies associated with resonance
of structural elements are known to occur in heterogeneous materials. Heterogeneous materials with random
structure differ from those with a periodic structure. For example, in a random particulate composite [35]
of 0.15 mm diameter glass spheres in epoxy, wave propagation was found to be fairly non-dispersive; only
when the wavelength became equal to the inclusion radius did the tone burst become sufficiently distorted
to prevent velocity measurements. Longitudinal waves were propagated up to about 5 MHz; attenuation
increased with frequency to a much greater extent than in the matrix alone. In a layered composite [36]
containing periodic arrays of spheres, pass bands and stop bands were observed at ultrasonic frequencies.
Furthermore, tungsten wires 0.127 mm in diameter spaced 0.3 mm apart in aluminum alloy, the stop band
begins at about 5.5 MHz [26]. As for a possible generalized continuum interpretation, Cosserat elasticity does
predict dispersion of shear waves; micromorphic / microstructure elasticity predicts dispersion of longitudinal
waves as well as cut off frequencies. Such interpretation is not pursued here because in a viscoelastic material
wave dispersion is also associated with damping: a confounding variable. In the dense foam, viscoelastic loss
may suffice to account for the apparent cut off of wave propagation at high frequencies.
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3.4 Generalized continuum theories: comparison

Cosserat elasticity and theories with less freedom have been explored in the interpretation of quasi-static
phenomena in a dense foam. Classical elasticity does not apply to this material because it does not capture
the size effects observed. An assumption of couple stress elasticity [9], corresponding to N = 1 in the Cosserat
interpretation, does not apply because it gives rise to very poor fits of the size effect results in both torsion
and bending. Moreover, the inferred warp of a square section bar is consistent with a small N , not N = 1.
Modified couple stress theory [11] requires β

γ = 1 as well as N = 1; this also gives poor fits to size effect

results. If one assumes only β
γ = 1, and allows N free, the fit is also poor. Restricted Cosserat elasticity

[12] does not apply either, because its assumption of Ψ = 1.5 fails to fit the size effects in torsion and its
assumption of β

γ = 1 fails to fit the size effects in bending. The goal of eliminating the predicted divergence
of rigidity has merits but if experimental results call for a restricted range of parameters, that will show up
in the curve fits. While some assumptions may simplify the mathematics, that is not the case for β

γ = 1; for

bending, the solution for both round and square cross sections is simplified for β
γ = −ν. In any case, the

restricted models do not apply to the present dense foam. As for other studies pertinent to N , planar model
materials made by machining an array of circular holes into aluminum bars [19] were studied for size effects
and were interpreted via Cosserat elasticity. The holes were 3.5 mm in diameter and were spaced 12.7 mm
and 16 mm in different directions. Parameters obtained were E = 39 GPa, `b = 10.14 mm, N = 0.112; the
effect of N was modest over the range considered.

The set of dense foam Cosserat elastic constants in Eq. 19 (torsion) and Eq. 23 (bending) is consistent
with the exception of a relaxation of the isotropic requirement E = 2G(1 + ν) by 9% based on a slight
anisotropy revealed by the ultrasonic results. Values differ somewhat from those obtained from square
specimens (Eq. 18). The difference is attributed mostly to differences in incomplete cells and surface
damage associated with specimen preparation. The inference of small N in dense foam is robust to such
variations.

Suggestions to restrict ranges of elastic constants are not new. In the early development of the theory
of elasticity, it was proposed that Poisson’s ratio is 1/4 for all isotropic materials based on a specific model,
due to Navier, assuming central forces between atoms [24] [25]. Experiments revealed a range of Poisson’s
ratio, showing the model to be overly restrictive.

As for generalized continuum theories with freedom similar to that of Cosserat elasticity, the theory of
elasticity with voids [27] provides sensitivity to dilatation gradient but has no rotational degrees of freedom;
there are a total of 5 isotropic elastic constants. The theory of voids [27] when considered alone, gives rise
to size effects in bending but not in torsion so it does not apply to the present dense foam. Micro-strain
elasticity allows sensitivity to gradients of local strain. A homogenization analysis [28] based on micro-strain
elasticity was applied to porous media. This theory incorporates two nonclassical parameters corresponding
to the diameter and spacing of pores and two parameters based on the elastic moduli of the solid matrix.
The theory predicts size effects [29] similar to those of Cosserat elasticity. The displacement field in the
bending analysis is identical to the classical field. That prediction differs from that of Cosserat elasticity in
which square section bars undergo sigmoid deformation of the lateral surfaces [6]. Warp in torsion was not
considered in the micro-strain analysis. The micro-strain theory predicts size effects in torsion and bending
to be of the same magnitude; it worked well to interpret [29] size effects in a low density polymethacrylamide
foam [30]. For that foam a Cosserat interpretation based on approximate solutions for square cross section
gave bending and torsion characteristic lengths of similar magnitude, `t ≈ `b. Strictly, a purely Cosserat

solid obeys
`2t
`2b

= 2(βγ + 1) (Eq. 10) from the definitions of the lengths; because |βγ | < 1 based on stability

conditions, `t < 2`b. So the low density foam is likely to have sensitivity to other gradients in addition
to those of rotation, perhaps those associated with the microstrain concept. Holographic study of dense
foam [31] disclosed nonclassical strain at the corner of a square section bar in torsion; such deformation can
be understood within Cosserat elasticity. Because micro-strain elasticity requires the Cauchy stress to be
symmetric, such corner deformation will not appear in that theory.

There are also theories with more freedom than Cosserat elasticity. Microstretch elasticity [32] incor-
porates the freedom of Cosserat elasticity as well as sensitivity to gradient of local dilatation; there are 9
isotropic elastic constants. Microstretch elasticity is a subset of microstructure / micromorphic elasticity
[33] [34] which allows 18 isotropic elastic constants. The torsion results considered here are insensitive to
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dilatation gradient effects even they are present. For the present dense foam, dilatation gradient effects, if
present, are likely to be small because such effects would give rise to an effective bending characteristic length
too large to be subsumed within a Cosserat representation. By contrast, in the dense foam, a consistent set
of elastic constants for bending and torsion (with the exception of a slight anisotropy of modulus revealed
by ultrasound) was obtained assuming Cosserat elasticity.

3.5 Summary and implications

Results are consistent with a Cosserat interpretation in which the elastic constants are not at their extreme
limits. In particular, couple stress theory and its variants are not consistent with the results. Effects of
dilatation gradient appear to be too small to be discerned in the dense foam. It is possible that a micro-
strain model may apply to the observed size effects but not to nonclassical deformation of bars of square
cross section.

Implications for future experiments are as follows. It is desirable to have as wide a range as possible of
specimen width values. For example, even though the cells are smaller than 0.2 mm and the largest cells are
barely visible on visual inspection, specimens 10 mm thick do not suffice for the asymptotic moduli to be
approached. Thicker specimens would provide a more definitive value of the asymptotic moduli and tighter
constraints on the remaining constants. Similarly, thinner specimens would provide improved values for Ψ
and N . As for other generalized continuum theories, to interpret experiments, one must have solutions of
the appropriate boundary value problems.

4 Conclusions

A dense polyurethane foam exhibits size effects with a characteristic length considerably larger, by more than
a factor of 6, than the cell size. The Cosserat coupling number N is shown to be small via several methods.
Assumption of limiting values of N , Ψ or β

γ as suggested by several authors is shown to be inapplicable to
this dense foam. Comparison of square and round sections suggests a modest effect of incomplete cells or
damage at the surface in reducing the apparent characteristic length. A consistent set of elastic constants
for bending and torsion (with the exception of a slight anisotropy of modulus revealed by ultrasound) was
obtained assuming Cosserat elasticity. This suggests a minimal role for dilatation gradients associated with
void / microstretch theory in this material.
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