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Abstract

A 3D lattice structure consisting of pivoting cubes with flexible links at the corners is pre-
sented. It exhibits anisotropic negative Poisson’s ratio -0.54 and -0.75. Size effects occur in
torsion and bending; these effects are consistent with Cosserat elasticity but not with classi-
cal elasticity. Cosserat elastic solids exhibit sensitivity to strain gradients; size effects occur in
torsion and bending; also reduction in stress concentrations. The Cosserat effects also reveal
anisotropy.

1 Introduction

Negative Poisson’s ratio materials are by now well known. A 3D negative Poisson’s ratio material
based on transformed open cell polyurethane foam was reported [1] in 1987; it had a Poisson’s ratio
-0.7; metal foams of similar structure can have Poisson’s ratio as small as -0.8 [2]. Negative Poisson’s
ratio materials have been called “dilational” [3] because they easily undergo volume changes but
are difficult to shear. An ideal dilational material would approach the isotropic lower limit on
Poisson’s ratio -1. Hierarchical two phase composites were developed and studied; Poisson’s ratio
approaches -1 as contrast between constituent moduli is increased. 2D honeycomb with inverted
hexagonal cells [4] can exhibit negative Poisson’s ratio; 2D chiral lattice [5] exhibits a Poisson’s
ratio of -1 over a range of strain as shown by experiment and analysis.

Hinged structures are of interest in part because they can be readily shown to exhibit negative
Poisson’s ratio, and in part because with the advent of 3D printing, one can seek to approximate
such lattices in physical form. Structures of hinged polygons, called hinged tessellations, have
been studied from the perspective of mathematics [6] [7] [8] rather than physical properties. These
are the earliest known hinged polygon constructions. A Poisson’s ratio of -1 can be attained via
inverse homogenization in 2D structures with rotating rigid squares connected at the corners by
ideal hinges [9]. Rotating squares were considered [10] as a model for the negative Poisson’s ratio in

1



some crystals. Rotating hinged squares were developed independently to achieve a Poisson’s ratio
-1 [11]. Related 2D systems with rotating hexamers [12] [13]; rotating rhombi [14], triangles [15] and
prisms [16], also give rise to negative Poisson’s ratio. Related structures with hinged components
can exhibit negative Poisson’s ratio and zero bulk modulus, with arbitrarily large volumetric strain
[17].

It had been suggested in view of the original foams that a coarse cell structure is needed to
control the Poisson’s ratio [18] and that moments carried by the structural elements constitute a
hidden state variable that gives rise to a negative Poisson’s ratio. Indeed many such materials
do have cells of large size. However theories that incorporate distributed moments, as presented
below, allow the same range of Poisson’s ratio as in classical elasticity [19]. Negative Poisson’s
ratio is known to occur in materials in the vicinity of a phase transformation. These materials have
fine scale structure; they constitute a counterexample to the suggestion that a coarse structure is
necessary. Further details on causes of negative Poisson’s ratio are provided elsewhere [20].

A 3D structure of cubes connected by ideal hinges or pivots was found to exhibit anisotropic
negative Poisson’s ratio [21]. It is also of interest because it does not obey classical elasticity.
Stretching of the lattice causes tilting of the cubes at the hinges. Void space appears in the
structure so there is a volume change. The structure expands laterally under tension so there is a
negative Poisson’s ratio. The symmetry at first sight appears to be cubic; orthotropic anisotropy
arises from the connectivity of the hinges. Young’s modulus is zero but Poisson’s ratio depends on
direction. If the hinges are ideal, the structure has zero resistance to axial stretching but is rigid
with respect to torsion and bending. In a classical solid, the same Young’s modulus that governs
tension must also apply to bending. Classical elasticity is insensitive to gradients in strain such as
those in bending. Such extreme sensitivity to strain gradients may be interpreted in the context of
Cosserat elasticity, a generalized continuum theory of elasticity which allows sensitivity to strain
gradients.

The Cosserat theory of elasticity [22] [23] is a continuum theory that incorporates local rotation
of points as well as displacement of points. Micropolar elasticity [24] incorporates an inertia term
that affects wave propagation. The stress σij (force per unit area) can be asymmetric. The
resulting distributed moment from this asymmetry is balanced by a couple stress mij (a torque
per unit area). The antisymmetric part of the stress is related to rotations colorblue of points :
σantisymij = κeijk(rk − φk) in which κ is an elastic constant, φk is the rotation of points, called
micro-rotation, eijk is the permutation symbol, and rk = 1

2eklmum,l is “macro” rotation based on
the antisymmetric part of gradient of displacement ui. The constitutive equations [24] for linear
isotropic Cosserat elasticity are:

σij = 2Gεij + λεkkδij + κeijk(rk − φk) (1)
mij = αφk,kδij + βφi,j + γφj,i (2)

The usual Einstein summation convention for repeated indices is used. The comma indicates
partial differentiation. The six isotropic Cosserat elastic constants are expressed as the following
technical constants which are helpful for physical insight. Here, λ is a Lamé constant from elasticity
theory. The range of Poisson’s ratio is the same in Cosserat solids as in classical solids.
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Y oung′s modulus E =
G(3λ+ 2G)
λ+G

(3)

Shear modulus G (4)

Poisson′s ratio ν =
λ

2(λ+G)
(5)

Characteristic length, torsion `t =

√
β + γ

2G
(6)

Characteristic length, bending `b =
√

γ

4G
(7)

Coupling number N =
√

κ

2G+ κ
(8)

Polar ratio Ψ =
β + γ

α+ β + γ
. (9)

Specific nonclassical effects include size effects in which slender bars in torsion [25] or bending
appear to have higher moduli than thicker ones, and reduction in the concentration of stress or
strain around holes or other heterogeneities.

The characteristic lengths govern the size scale at which nonclassical effects may be expected.
The coupling number governs the magnitude of the effects.

If the material is anisotropic, these constants can be interpreted as technical constants with
direction dependence as is done in classical elasticity. Specifically, one can determine Young’s
modulus E and Poisson’s ratio ν in different directions without using the classical tensorial constants
Cijkl. Similarly in the Cosserat case one can infer constants based on measurements with strain
gradients in different directions.

Cosserat elastic constants can be determined from size dependence of rigidity in torsion and
bending [25]. Such experiments disclosed purely classical behavior in aluminum [26] and also in a
particulate composite containing aluminum beads in an epoxy matrix [25]. Cosserat effects were
observed in a dense closed cell foam [27] and in low density negative Poisson’s ratio foam [28].
Cosserat effects were observed in in a two-dimensional polymer honeycomb [29] and in a 2D lattice
[30] originally developed to exhibit chirality and a Poisson’s ratio -1 [5]. Strong Cosserat effects
were observed in a lattice [31] designed to manifest such behavior.

Structures with ideal hinges are of conceptual interest but they are not so easy to fabricate.
In particular they cannot be made by 3D printing. In the present study, we fabricate and study
a flexible structure made of cubes connected by deformable links at their corners. This structure
is similar in geometry to a hinged one studied theoretically [21]; the deformable links are non-
ideal hinges. In the present research, Poisson’s ratio and sensitivity to gradients are determined
experimentally for the flexible cube structure.

2 Materials and methods

The lattice structure (Fig. 1) is comprised of cubes of side length a = 6 mm connected by flexible
links 1 mm long at the corners. Fig. 2 shows the detailed structure of the link elements. Preliminary
trials were done using different link lengths. The thickness of the links was limited by the resolution
of the 3D printer. The cubes were provided with a slight tilt to prevent contact between them during
compression. The lattices were physically embodied using a 3D Systems sPro 60 HS-HD selective
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laser sintering 3D printer. The parent material was a polyamide stated to be equivalent to nylon 12.
Lattices of different size were made to enable size effect measurements. Each lattice was cemented
to metal end pieces to provide appropriate end conditions. The specimen length was three times
the width. That aspect ratio was considered sufficient to minimize end effects according to Saint
Venant’s principle. Indeed [32], if Poisson’s ratio is not extreme, an aspect ratio of one to one
suffices to limit the error to about 3%. The width in the transverse directions was the same. In
any case, use of the same aspect ratio for each size specimen implies the role of end effects is
independent of specimen size.

Specimens were 3, 4, 6, and 8 cubes in width. A specimen 10 cubes in width was also made
but difficulties in the 3D printing process rendered it unusable. Due to the connectivity of the
alternating link structure, specimens fewer than 3 cubes in width did not have sufficient mechanical
integrity to be included.

Figure 1: Lattice structure, oblique view. Scale bar, foreground, 10 mm.
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Figure 2: Lattice structure, close up view. Scale bar, 5 mm.

Compression tests were done to determine Young’s modulus in the absence of imposed gradients.
Poisson’s ratio was determined from compression testing by measuring transverse deformation via
digital photography and via a micrometer.

Torsional and bending rigidities for each specimen were measured using broadband viscoelastic
spectrometry (BVS). The BVS makes use of a pair of orthogonal Helmholtz coils to generate a
torque upon a magnet at the free end. Bending or torsion can be achieved depending on which
coil is excited by an electric current of known magnitude. The method allows torsion and pure
bending tests to be conducted on the same specimen. The magnetic field acts upon a high intensity
permanent magnet attached to the specimen’s end piece via a ceramic stalk. The torque M is given
by the cross product M = µ × B in which µ is the magnetization vector of the magnet and B is
the magnetic field imposed by the Helmholtz coil. Torque was calculated from the voltage across a
1Ω resistor in series with each coil. Torque sensitivity was calibrated via measurements on the well
characterized 6061 aluminum alloy.

Deformation of each specimen was measured from motion of a laser beam reflected from a mirror
cemented to the magnet colorblue attached to the bottom of the specimen or to the bottom end piece
of each specimen. colorblue The top end was fixed. Mounting mirrors on the end piece was done for
the larger specimens to eliminate possible error from compliance of the ceramic stalk. A position
sensitive silicon light detector was used to convert either horizontal or vertical displacement of the
laser beam to a change in voltage. Vertical displacements correspond to bending and horizontal
displacements correspond to torsion. The light detector was calibrated via motion from precision
vertical and horizontal translation stages.

The input signal was a sinusoidal signal with a frequency of 1 Hz from an SRS Model DS345
function generator. A frequency of 1 Hz is well below any resonant frequencies so a quasi-static
interpretation is appropriate. The same frequency was used for all tests, so viscoelastic effects are
decoupled from size effects.

5



2.1 Analysis and interpretation

Simple compression, in which there are no imposed gradients, reveals Young’s modulus E and
Poisson’s ratio ν. For analyzing and interpreting torsion and bending data, analytical solutions for
square cross sections of isotropic Cosserat solids were used. Size effects are quantified by Ω as the
ratio of structural rigidity to its classical counterpart.

For torsion of a square cross section Cosserat elastic bar of width 2a, the twisting moment M
is as follows, with θ as the angular displacement per length. For a classically elastic solid,

M =
898
399

Ga4θ. (10)

The structural rigidity is M
θ .

For a Cosserat solid when κ → ∞, corresponding to N = 1, the total torque M [33] simplifies
to

M =
4
21
G(
a

2
)4θ

1796 + 126
(
449 + 2740¯̀2 + 3960¯̀4) ¯̀2 + 693

(
152 + 2280¯̀2 + 6615¯̀4) ¯̀2

b

8
(
19 + 465¯̀2 + 990¯̀4)+ 1485

(
6 + 49¯̀2) ¯̀2

b

. (11)

in which ¯̀ = 2`t/a, ¯̀
b = 2`b/a. The ratio of Cosserat rigidity to classical rigidity is defined as

Ω, called the rigidity ratio or relative stiffness. This solution is superior in the regime of strong
coupling or for β/γ < 0, to that of [34], which overestimates the effects for large N approaching
or equal to 1. In the present experiments the shear modulus G is obtained from the asymptotic
rigidity as width becomes large. The characteristic length `t is obtained from the increase in torsion
relative stiffness Ω as width becomes small. Equation 11 contains `b but the rigidity is very weakly
dependent on `b. If N < 1 and Ψ is not too far from its upper limit 1.5, the plot of Ω vs. width 2a
levels off for small width. That is not seen in the present experiments. Torsion experiments reveal
Ψ only if N < 1.

For bending of a rectangular bar of width 2a, the rigidity ratio (relative stiffness) depends on
the bending characteristic length `b and the Poisson’s ratio [35]. If β/γ = −ν, the rigidity ratio is
Ω = M

1/R
1
EI , with M as moment, I as moment of inertia of the cross section and R as radius of

curvature,
Ω = [1 + 24(`b/2a)2(1− ν)]. (12)

For arbitrary values of Poisson’s ratio, the rigidity ratio is, (to fourth order in `b/2a),

Ω =

[
1+24

1 + 2βγ ν + ν2

1 + ν

(
`b
2a

)2

−480
(
β

γ
+ ν

)2 44− 38ν + 3N2(1− ν)(13− 9ν)
N2(1 + ν)(22− 19ν)

(
`b
2a

)4
]
. (13)

In the experiments the Young’s modulus E and Poisson’s ratio ν were obtained obtained from
compression tests. The characteristic length `b was obtained from the increase in bending relative
stiffness Ω as width becomes small. N and β/γ were obtained from the detailed shape of the curve.

3 Results and Discussion

The average density for these structures was 0.47 g/cc. Poisson’s ratio ν obtained from compression
was -0.54 and -0.75 in two orthogonal transverse directions; Young’s modulus E in the longitudinal
direction was 0.91 MPa. As with the cube structure with ideal hinges [21], orthotropic anisotropy
arises from the connectivity of the flexible hinge-like links.
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Results of torsion size effect studies are shown in Figure 3 and Figure 4. The specimen was
rotated 90◦ about its longitudinal axis between these tests. Such a rotation changes the direction
of strain gradient in bending but not in torsion. It is entirely distinct from the small rotations of
the free end, less than 1◦, used during testing. There is minimal difference in the elastic constants
obtained from the two experiments as is expected: the torque was in the same direction for both
and the same strain gradients apply. The goodness of fit was R2 = 0.94 for 0◦ rotation and R2 =
0.91 for 90◦ rotation. Curve fits based on Eq. 11 involve both `t and `b. Because rigidity is strongly
dependent on `t but very weakly dependent on `b, the value of `b from the fit is not sufficiently
precise to be meaningful. We remark that an initial value of `b was input from the bending tests
as 8.5 mm and 4.7 mm respectively. The fitting for torsion did not alter these initial values.

Figure 3: Torsion size effects. The solid curve is theoretical for G = 2.5 MPa, `t = 5.2 mm, and
N = 1. Classical elasticity predicts Ω independent of width as illustrated by the horizontal dashed
line. The smallest specimen was 3 cubes across; the largest was 8 cubes across, for all tests.
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Figure 4: Torsion size effects after 90◦ rotation about the long axis. The solid curve is theoretical
for G = 2.4 MPa, `t = 5.4 mm, and N = 1. Classical elasticity predicts Ω independent of width as
illustrated by the horizontal dashed line.

For bending, rotation of the specimen about its longitudinal axis makes a difference in the
pertinent component of deformation gradient as indicated by the difference in Ω and in `b in
Figure 5 and Figure 6. The goodness of fit was R2 = 0.94 for 0◦ rotation and R2 = 0.95 for
90◦ rotation about the longitudinal axis. The Young’s modulus E was obtained from compression
experiments. By contrast to a similar structure with ideal hinges, the Young’s modulus does not
vanish. The characteristic lengths differ as is expected from the anisotropic nature of the structure.
The Cosserat anisotropy differs from classical anisotropy in that for bending, the stress is in the
longitudinal direction for both orientations. Only the gradient in stress depends on rotation about
the longitudinal axis.
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Figure 5: Bending size effects. The solid curve is theoretical for E = 0.91 MPa, `b = 8.5 mm, and
N = 0.21; β/γ = 0.6. Classical elasticity predicts Ω = 1 independent of width as illustrated by the
horizontal dashed line.

Figure 6: Bending size effects after 90◦ rotation about the long axis. The solid curve is theoretical
for E = 0.91 MPa, `b = 4.7 mm, and N = 0.99; β/γ = 0.8. Classical elasticity predicts Ω = 1
independent of width as illustrated by the horizontal dashed line.

A summary of the elastic constants of the cube structure is as follows. G = 2.45 MPa, `t = 5.3
mm, and N = 1 for torsion; E = 0.91 MPa, ν1 = -0.54, ν2 = -0.75; `b1 = 8.5 mm, and N1 = 0.21;
`b2 = 4.7 mm, and N2 = 0.21. For comparison with the characteristic lengths, the cube width was
6 mm. Because the lattice is anisotropic, one does not expect the isotropic interrelations among
the elastic constants to apply.

Bending in the direction shown in Figure 5 revealed the largest magnitude of size effects in this
series. By contrast to a similar cube structure with ideal hinges [21], the present cube structure,
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which has flexible hinge-like ligaments, does not have a zero value of Young’s modulus E in tension
/ compression. The zero E in the ideal hinged cube structure [21] combined with rigidity in
torsion and bending imply Cosserat characteristic lengths that tend to infinity. In the present cube
structure the cubes are linked with flexible ligaments that, in contrast with perfect hinges, have
a nonzero resistance to rotation; they also have a finite resistance to translation. As a result, the
Cosserat effects are of modest magnitude. In a related vein, a 3-D printed material [36] inspired by
an ideal structure of hinged rotating squares [11] exhibited a Poisson’s ratio of -0.8 in comparison
with -1 for the ideal hinged structure.

Cosserat size effects in the present lattice were of modest magnitude compared with those in a
prior triangular cell lattice [31] designed for strong effects. The torsional characteristic length, 5.3
mm, is somewhat smaller than the cube width, 6 mm. The maximum torsional size effect, less than
a factor of 2.5, was considerably smaller than the factor 35 observed in the triangular cell lattice
[31]. The reason is that the present lattice required at least three cubes in the transverse direction
of the smallest specimen to provide a unit cell in view of the alternating structure of the ligaments.
In bending the characteristic length in one direction was larger than in the other but the maximum
size effect was less than a factor of 4, again as a result of the unit cell size.

Idealized hinged structures are of interest in part because visualization and analysis are facil-
itated. Ideal hinges are not so easy to fabricate, particularly in lattices for which many hinges
are desired. Flexible hinge-like ligaments resist rotation and have compliance to compression and
shear, unlike ideal hinges which freely rotate and are rigid to compression and shear. Flexible liga-
ments therefore capture only a portion of the intended behavior, both in classical and in Cosserat
elasticity.

4 Conclusions

A lattice structure consisting of pivoting cubes with flexible links at the corners is made by 3D
printing and studied experimentally. Poisson’s ratio is negative and anisotropic. Size effects occur in
torsion and bending; these effects are consistent with Cosserat elasticity but not classical elasticity.
The Cosserat effects also reveal anisotropy.
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