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EXPERIMENTAL STUDY OF MICROPOLAR
AND COUPLE STRESS ELASTICITY
IN COMPACT BONE IN BENDING*

L F.C.¥Yanat and Roniric S, Lakis?

Abstrace - Generalized continunm theorics such

as couple stress theory and micropolar theory have degrees

of freedom in addition to those of classical elasticity. Such theorics are thought to be applicable to materials

with a fibrous or granular structure, In this

study we observe size effects in quasistatic bending of compact

hone. The effccts are consistent with micropolar theory. From them we evaluate two nonclassical clastic

constants,

INTRODUCTION

In the development of the classical theory of clasticity
itis assumed that the interaction upon a differential
clement of surface is specified completety by a force
vector. IT one assumes that in addition a couple vector
may act on the surface clement, one may develop the
concept of couple stress, or distributed couple per unit
arca. Theidea of couple stress was introduced by Voigt
in 1887 and was used by the Cosserat brothers (1900)
inthe development of generalized  theory for
mechanical behavior, which admits an asymmetric
force--stress tensor. This theoretical development
remained dormant until the 1960s during  which
various workers developed  generalized continuum
theories. Theories of clasticity with microstructure
(Mindlin, 1964) and of microclastic solids (Eringen
and Suhubi, 1964) are quite general and can describe
various wave dispersion effects and resonances of the
‘unit cell’. Contained as a special case within these is
the Cosserat theory  (Mindlin, 1965) which s
‘considered identical to the micropolar theory of
Eringen (1970). In this theory poimts within the
material have the rotational degrees of frecdom of a
rigid body as well as the usval translational degrees of
freedom. Cosserat theory containsas a special case the
couple stress theory of Mindlin and Tiersten (1962)
and of Toupin (1962). Finally, classical elasticity is
contained as a special case within couple stress
clasticity.

Many authors then solved boundary value problems
under these theories, Of particular interest is the effect
of cauple stress in the problem of finding the stress
Stress coneentration

.

concentration around a hole,

I)'

factors arc predicted to be smaller in a couple stress
clastic material than in a classically elastic material,
The reduction in stress concentration is most
significant when the hole size approaches a certain
characteristic length, which is an additional elastic
constant in couple stress theory.

The question of the magnitude of couple stress
clastic coefficients has heen addressed by scveral
investigators. For example Kréner (1963) points out
that there must be a local resistance to curvitire as
required by couple stress theory sinee the interatomic
lorces exert influence further than one atomic spacing,
In polycrystalline materials the structural element of
interest is the constituent grain, and the characteristic
length might be of the order of the grain size. The
magnitude of couple stress clastic coelficients has heen
predicted for structured materials on the basis of
continuum approximations in the case of a lattice of
clastic beams (Askar and Cakmak, 1963), a laminated
composite (Herrmann and Achenbach, 1967) and a
honeycomb structure of cubical cells (Adomeit. 1967).
Bonc, a natural fibrous composite, has also been
modelled in the light of extended continuum theory. It
has been suggested that cancellous (Swenson et al.,
1979) and compact (Lakes, 1980) bone may obey
couple stress theory. In such continuum descriptions
of structured systems the characteristic length is
generally predicted to be of the order of the size of the
stractural clements.

Few experimental efforts have been made to verify
couple stress and related theories, Attemipts to find
evidence for couple stress elastic behavior in metals
have not been successful (Schijve, 1966 Llis and
Smith, 1968). Quasistatic cxperiments performed by
Gauthicr and Jahsman (1975)on a composite model to
observe micropolar clastic behavior, disclosed no
evidenee of sueh behavior, Optical studies ol crystalline
KNO,, interpreted by Askar (1972) on the basis of
micropolar theory suggest a characteristic length of
the order of the lattice parameter, far too small to he
in macroscopic - mechanical  experiment.
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Experiments by Perkins and Thomson (1973) on a
fom material suggest couple stress elastic behavior,
but artifacts due 1o viscoclastic behavior may have
contributed. Yang and Lakces (1980) have reported
evidence of couple stress clasticity in bone in
quasistatic torsion. Lakes (1981) has performed
dynamical experiments on bone, which disclose
evidence of couple stress.

In this article we report the results of quasistatic
bending experiments on human compact bone. The
results are interpreted in terms of Mindlin and
Tiersten’s  couple  stress  theory  and  Eringen's
micropolar theory.

THEORY

Both the couple stress theory of Mindlin and
Ticrsten (1962) and the micropolar theory of Eringen
{1970 will be discussed. A simple approximate
solution for the hending problem is available in couple
stress theory, and a relatively complicated  exact
solution is available in micropolar theory. Results of
bending experiments will be evaluated in the light of
both solutions. '

The constitutive equations of isotropic couple stress
theory are [2]:

,;’,... = ,{,.“4\'” | 3,,(‘._, H
= g A, (2)

in which "™ is the symmetric part of the force stress
tensor, m” s the deviator of the couple stress tensor, o
is the strain, x; is the curvature, 2 and j are the Lamé
constants, and n and n' arc couple-stress elastic
constants. The quantity [ = (3/5)' ? has dimensions of
lenpth and is referred to as a characteristic length, The
Mindlin-Tiersten couple stress theory is at times
referred to as indeterminate couple stress theory since
the antisymmetric part of the force - stress and the trace
of the couple stress are not determined by the
constitutive cquations. These quantities depend on
boundary tractions in specific situations.

The problem of bending of a beam with rectangular
cross scction has been examined by K oiter (1964). The
Mexural rigidity Jis given by:
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inwhich = (34 + 2102 + p)is Young's modulus, v
= A2{% + p)is Poisson's ratio, and b is the width and
I the height of the cross section. The cquality holds
only for y'ly ~vo We have performed a bending
analvsis for a beawm with circular cross section of
diameter d. and have obtained simitar results:
xk T s 0
Jgo dt m,(~,/~(1 et v 4)
64 \ 'R
in which again the equality holds only for iy = = v.
We may write this ‘
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in which [} (G/EYER[1 + v2 + 2v(y'/m)] is a
characteristic length for bending. An cxpression of this
sort is useful in the analysis of experimental results
since it predicts a plot of rigidity/(size)? vs (size)? to be
a straight line offset from the origin. The offset is
rclated to the characteristic length, and is zero in a
classically elastic solid. The situation is similar to the
case of torsion, in which Koiter {1964) has obtained an
exact solution which Yang and Lakes (1980) have used
in the analysis of size effects in torsion experiments.

The constitutive equations of linear isotropic
materials in the micropolar theory of Eringen (1968)
are

e = e, 0, + (2t + K)oy, + Key,(r, — ¢,) (6)
My = o, 8+ ﬂ(,)k, s M

in which ¢ is the force stress tensor, m is the couple
stress lensor, ¢, is the usual small strain tensor, ey, i5
the permutation symbol, r is the macrorotation vector,
¢ is the microrotation vector, 4 and jr are the Lamé
constants and x, a. ff and y are additional elastic
constan(s associated with micropolar theory, Observe
that the Mindlin - Ticrsten couple stress theory can be
obtained as a special casc of micropolar theory by
imposing the restriction @, = r,. The obscrved shear
modulus in the abscnce of microrotations is yt + x/2
{Cowin, 1970). Observe also that in micropolar theory
the force stress and couple stress are completely
determined by the constitutive equations.

The theory has been applied by Krishna Reddy and
Venkatasubramanian (1979) to obtain an exact
solution for the case of bending of a Jong circular
cylinder of diameter d = 2a. The cylinder is subjected
to couples M and — M on its ends, The curvature 1/R
and end moment M are rclated by the flexural rigidity
J =[M/(1/R)).

Analytically the flexural rigidity can be expressed by
the form:

nd* E
J=J, Q=" ---
64
gN? (l ~ () By + v)? )]
% l S RN R +
v () £8,) + SN — v)
(8)
in which

3G = (8 V[(3,1,(8,) = 1SV (8,1,08,) = 21, (8],

Jy is the classical flexaral rigidity, 0 is the ratio J/J,.
N = x/[2(¢ + x)] is the coupling number, and

- i+ ) 17
§7 =

isa micropolar length parameter for bending. [, and 1,
are modified Bessel functions of order zero and one
respectively and E is Young's modulus. Based on the
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Fig. I. Specimen configuration. Dimensions are in mm,

above result, one should be able to distinguish between
micropolar elastic behavior and classical elastic
behavior by measuring the fexural rigidity J of
circular cylinders of different diameter d = 2a. The
material coefficients E, N, f/y, 8~', and v can be
obtained by curve fitting in a plot of J/d? vs d*, In a
classically elastic material, the micropolar quantities «,
A, v, and x vanish, Q becomes cqual to unity, and the
classical result for bending is recovered. The special
case of couple stress clasticity is obtained by setting

A-A SECTION

Fig. 2. Experimental apparatus. A. Barrel of free-core LVIDT.

B. Bone specimen. C. Ball-bearing pulley. ). Dead weight. E.

Wheel for mounting LVDT. F. Base plate. G. Plexiglass cell.

H. Temperature probe. 1. Thermoelectric heater. J. Adapter
for loading,

N =1, This case is admissiblc on both thermodynamical
and physicat grounds (Cowin 1970) contrary to the
carlicr views of Kaloni and Ariman (1967),
Micropolar theory and its special case couple stress
theory predict a stiffcning effect which depends on the
size of a specimen of malterial. This stiffening is
predicted in the bending of plates {(Gauthier and
Jahsman, 1975) as well as beams and in the torsion of
rods (Koiter, 1964 ; Gauthier and Jahsman, 1975). The
stilfening effect becomes noticeable if the specimen
diameter is ten times the characteristic length, and can
become large as the specimen diameter approaches the
characteristic length. Neither stiffening nor size eflects
are predicted in tension (Gauthier and Jahsman, 1975).

INSTRUMENTATION AND PROCEDURE

Specimens of compact bone were obtained from
human long bones from donated fresh-frozen autopsy
tissuc. Specimens were cul slowly, while wet, on a
precision lathe into a cylindrical shape with Nared,
threaded ends as shown in Fig. 1, and were cut so that
the long axis of the specimen was parallel to the
dircction of the osteons. Specimens 2-4 were.from the
femur of a male 175cm (5'97)in height, 59.1 kg in mass
(1301b weight) who died at age 27 of hepatic failure.
Specimens 5 and 6 were from the right femur of a male
178 cm (5" 107)in height, 72.7 kg in mass (160 1b weight)
who died at age 57 of Hodgkin's discase. These
specimens are the same as those used by Yang and
Lakes (1981) in a serics of torsion tests to explorc
couple stress elastic behavior. Bone 1 was used only for
a preliminary torsion experiment and is not included
here. ,

During the course of experiments the specimens
were kept in Ringer's solution with a bactericidal
additive, and  maintained  at body temperature

65°C £02°CY by means of a closed loop

temperature controller of original design. One end of
the specimen was fixed on the base plate as shown in
Fig. 2. The other end was connected with an adapter
which cnabled a step couple to be applied by means of
an arrangement of dcad weights, low TIriction ball
bearings, and pulleys. A loading history approximated
by a step function of time with a risctime of less than
onc second was applied to the specimen and sustained
for periods of time greater than 240 s to constitute a
bending creep experiment. In order to isolate the
instrument from external vibration and shock, the base
plate was mounted on a specially designed foundation
composed of layers of sand, steel plate, cloth, a heavy
steel block, and rubber. To reduce the error due to
fricion of the loading system, precision ball bearings
used in the pulleys were vibrated in *dither” at 3-4 kHz,
by magnetic coils or by piczoelectric transducers, The
magnelic vibrator was more effective,

The radius of bending curvature R was determined
by two DC to DC lincar variable differential
transformers (LVD7Ts), which were mounted on an
adapter and were powcered by a Tektronix power
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module. The LVDTs were calibrated using a bench
micrometer. The two LVDT oulputs were connected
o a two channel Gould chart recorder. 1t was
necessary to climinate the effect of parasitic torsion of
the specimen  since the lop lorque rotor was
unconstrained to minimize friction. This cffect was
minimized by adjusting the loading system until the
difference of the LVDT outputs approached zero, The
LVDT outputs were summed to climinate any residual
contribution to the results. Maximum strain did not
exceed 107, which ensured both material and
geometrical linear bchavior. Linearity of response was
cheeked by repeating the tests at different load levels.
Sufficient time for creep recovery was allowed between
any two lests. After this, cach specimen was cut 1o a
smaller size, allowed to recover strains introduced in
machining and the tests were repeited.

Analysis bascd on approximate couple stress theory
was performed by ‘assuming the equality to hold in
cquation (5) and defining y = J/d?, x = d%. A lcast-
squares analysis was performed to obtain  the
cocfficients Band Ain v = By + A. Analysis based on
micropolar theory (equation 8) was more complicated
since the predicted size-dependence of (he bending
rgidity depends upon f, iow v and was carried out
using an optimizing computer routine, VEOIAD,
from the Harwell Subroutine Library. This subroutine
minimizes a function of several variables subjeet to
incquality constraints.
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Fig. X Behavior of bone No. 4 in bending, curve fitting based

on upper bound solution in couple stress theory, Squares:

tsochronal experimental dara for 1 = 01s; triangles, 1 =

2405 Sohid lines are based on least squares analysis using
cquation (5),

RESULTS

Size-cflect dala were obtained from five specimens of
compact bone. Data arc evaluated both in terms of an
upper bound analysis of bending in couple stress
theory and an cxact solution in micropolar theory, as
discussed in the section on theory. Figure 3 displays
experimental data points from a typical specimen and
a straight line based on Koiter's couple stress solution
fitted to the data by means of a least squares analysis.
Table | shows the calculated Young's modulus and
characteristic length for all five specimens, and Table 2
shows the associated confidence infervals.  Cal-
culations were performed on isochronal data, ie,
data from samples of different size at the same time
following application of the step load. This procedure
decoupled  viscoelastic phenomena from the hy-
pothesized couple-stress clastic phenomena so that
the latter could be examined alone. All specimens give
risc to regression lines offsct Trom the origin as
predicted by couple stress theory. The mean
characteristic length in bending f,, is 0.148 mm and
exhibits no significant dependence on time after
loading, in the range 0.3 10 240 s. In Table 2, observe
the one-sided confidence intervals for the regression
linc not to pass through the origin, i.c. for the
constitutive equation for bone not 1o be that of linear
clasticity. This confidence level is better than 99°% for
specimens 2,4, 5 6, al ¢ = 035,

The characteristic length [, is related to the total
time period of testing 7" by the following regression
equation: f,, [mm] = 0.186 — 0.00220 7° [days]. The
correlation cocfficient r = — 0,842 and r? = 0.708. We
attribute this association to dissolution of part of the
bone mineral during prolonged tests, an effect which is
more severe for siender specimens which have a larger
surface/volume ratio than thick specimens. Loss of
apparent stifiness of thin specimens due to mineral
dissolution results in  an underestimate  of the
characteristic length. The above regression equation
suggests that if all the experiments could be done in
zero days, the characteristic length would appear
larger; perhaps 0.18 mm,

The actual data for all specimens suggest that a
curved plotis more appropriate than a straight line fit.
This indicates that the cquality in equation (3) is not
satisficd and that if couple stress theory describes hone,
W # = v A curved plot is predicied by an exact
solution of the bending problem based on micropolar
clasticity theory, for fijy # — v, Data, therelore, were
also analyzed on the basis of this solution. Figure 4
shows experimental points and a curve hased on the
exact solution in micropolar theory (equation 8). The
‘best it theoretical curve shown was obtained by
means of an optimizing computer routine. This
program varied E. N, f/y and 87 until the sum of
squares of the deviations between experimental points
and the theoretical curve were minimized. Poisson’s
ratio v was assumed 1o be 0.3 Observe that N2/52
= [372(200 + 6] and define this quantity as {2, We
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Table |
T e e e —
Load A B E (" Time of test
Specimen time (s) (Newton) (MN/m?) (GN/m?) (mm) (days)
Bone No, 2 ot T e T —_—
Bone No. 2 0.3 638 + 191 954 + 15 19.4 0.098 38
120 599 + 192 R712+ 15 178 0.098
240 585 + 190 863 + 15 17.6 0.098
Bone No. 3 0.3 496 + 499 889 + 40 18.1 015 13
120 SIR +432 804 + 235 16.4 0.098
240 475 + 429 793 + 34 16.1 0.098
Bone No. 4 03 1370 + 292 799 + 19 16.3 0.16 13
120 1415 + 31 724 + 21 14.8 0.17
240 1390 + 303 716 + 21 14.6 0.17
Bone No. 5 0.3 1655 + 257 52 + 19 15.3 0.18 15
120 1765 + 223 675+ 16 13.8 0.20
240 1760 1 215 666 + 16 116 0.20
Bone No. 6 0.3 110 + 218 790 + 19 16.1 0.15 9
120 1200 + 211 00 + 19 14.3 0.16
240 1210 + 212 687 + 19 140 0.165
may regard [y, as a micropolar characteristic lengthin DISCUSSION
bending, since its squarc is the ratio of 3 micropolar
elastic constant to a classical elastje constant. For this Human compact honce appears to behave i 2

specimen, (,, = 0,63 mm. Figure
theoretical curves in the vicinity of
ls2 s held constant and N3 51,

simullancously. The results in bendi
ation of N2 ang §- 1.

very accurate simultaneous evaly
The valucs of E, 1,,, and By ar
determined, as illustrated in F
micropolar  coefficients for
examined in this study
Specimen 3 exhibited
large residual crror; it was
calculation of mean values,

not

Conlidence
interval
for line

not passing

Specimen origin

Bone No. 2

99.27;
997,
98.87,
69.5%
5%,
ny;
99,97/
99,9
99,9
9990
99.9%
99.9%7
99.9%
9.9
99.97;

flone Na.,

Rone No.

Bone No

Bone Na.

the
are displayed in Table 3,
a relatively large scatter, hence a

manner which is at variance with the predictions of
classical clasticity or viscoelasticity theory, FEx.
perimental data are fitted more accurately by an
exact solution of the bending problem in micropolar
theory, than by an upper bound solution in
indcterminate couple stress theory. In the micropolar
analysis Young's modulus s smaller and  the
characteristic length is larger than in the approximate
couple stress analysis. This occurs since in the latter
case a straight line is fitted 1o a curved plot. Young's

S displays several
the optimal curve.
and E are varied
1 donat permit a

¢ reasonahly well
ig. 4. Optimized
live  specimens

included in the modulus js pProportional to the limit, as specimen
diameter d becomes large, of the slope of the curve in
Table 2
Confidence interval
9077 95
Points A B A B

10 618 + 355 954 + 279 638 + 440 954 + 35

10 599 + 359 872 + 279 599 + 445 872 + 35 X
10 585 + 355 963 + 279 585 + 438 863 + 35 i
12 496 4 904 R89 + 72§ 496 + 1000 889 + 89
12 SIR + 783 804 + 63 518 + 962 804 + 78 ,)’
12 475 + 759 793 + 62 475 + 934 793 + 76 i
[N 1370 + S17 799 + 34 1370 + 611 799 + 41 A‘
14 F1S + 554 7124 + 37 1415 + 678 724 4 46 i
id 1390 + 540 616 + 17 1390 + 660 716 + 46 : ,;5

9 1658 + 487 752 4+ 36 1655 + 608 752 + 45 ‘!(‘

9 1765 + 423 675 + 30 1765 + 527 675 + 18 !

9 1760 + 407 666 + 30 1760 + 508 666 + IR ';; !
10 110 + 408 790 + 15 IO+ 503 790 + 44 f' }‘
10 1200 + 392 01 + 23S 1200 + 487 701 + 44 ,;!
10 1210 + 94 687 + 15 1210 + 489 687 + 44 , el i
e e T T e e e e 92 )
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Fig. 4. Behavior of bone No. 4 in bending, curve fitting based
on exact solution in micropolar theory. Solid curve is an
optimal theoretical curve {equation S)for £ = 12367 GN/m?,
N =10,y = 10, and S ' = 0,638 mm. Squares represent
experimental data, Dotted fine represents the predicted
behavior of a classically elastic material. Dashed line
tepresents the predicted behavior of a micropolar solid for
which iy = —~v.

Fig. 3 or Fig. 4. The regression line in Fig. 3 over-
estimates this slope.

The values of Young's modulus obtained in this
study may be compared with the results of Reilly,
Burstem, and Frankel (1974), who measured Young's
modulus £ of human compact bone in tension at a
strainrate 0.22 0.05s™'. At this strain rate, the time to
reach a strain 0.002- 0.005 is ~ 0.1 s. They obtained
the mean + the standard deviation, £ = 7.1 +
1S GN/m?, presumably atroom temperature. Smith
and Walmsley (1952) observed that the bending stifl-
ness of human bone decreases 0.25% per *IF increase in
temperature. Extrapolating from ¢e. 20 C to body
temperature (37°C)we get £ = 157 + 29GN/m? in
tension. The present couple stress analysis for 1 = 0.3 s
gives £ = 170 + 1L67GN/m? and the micropolar
analysis gives £ = 144 + 126 GN/m?, for human
hone at 37°C. The micropolar Young's modulus is
defined as

Foss Qe 0 RN 204 mN20 4 e b k) !
by Gauthier and Jahsman (1975} This is equivatlent 1o
the classical form if ji + x/2 is identificd with the shear
modulus. The above 1715 what is measured in simple
tension, in which there are neither strain gradients nor
microrotations. This £ is what is measured in bending
only il the specimen is many times thicker than the
characteristic fength. Slender specimens are stiffencd

26}
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J7d%(in kN)
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Fip. 5. Behavior of bone No. 4 in bending, curve fitting based
on micropolar theory. Squares represent experimental data.
Linc ending in a circle represents the best fit theoretical
curvefor E = 12367GN/mA N = 1.0, By = 1.0ands™! =
0.63% mm. Solid line ending in a triangle represents a near
oplimal theoretical curve for E = 12900 GN/m? N? = 0.64,
fify = 1.0,and 87" = 0.798 mm. Dashed line ending in across
isfor E = 13.200 GN/m?, N* = 032,86 = 1.063 mm.

by micropolar effects; the maximum stiflening
observed in this study is aboul a factor of two.

Isotropic micropolar and couple stress theory have
been used in the present analysis of bone, which is
anisotropic in its elastic properties. Although
anisotropic micropolar constitutive equations are
available (Eringen, 1968), the bending problem has
been solved only in the isotropic case. Application of
the isotropic solution to hone in the present study is
successful since the material axes are aligned with the
speccimen symmetry axes. [sotropic theory cannot,
however, be expected to adequately model the
relationship between characteristic lengths measured
in bending and in torsion, nor can it be used to extract
the full set of micropolar elastic constants from
experimental data for loading in different directions.
Interpretation of the present results in the light of a
bending solution based on anisotropic theory is a
subject for future rescarch,

Characteristic lengths obtained in this study are

‘wcomparable to the size of ostecons (ca. 0.25mm

diameter). Analytical models of structured materials
deseribed by continuum theories yield characteristic
lengths comparable to the size of structural clements.
We interpret the above to signify a dominant role for
the osteon as a structural element of bone. Pickarski

(1970} has cxamined the role of the ostcon in the,

fracture of bone: ‘pullout’ of osteons can contribute

P ™= =~ & & e smase v e = e ca ot b = = oo ___

trp i
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Table 3
E 8! {4 )

Specimen (GN/m?) N2 {mm) Py (mm) Residual
Bonc No. 2 19.1 0.50 0.232 1.0 0.16 0.75
Bone No. 3 - 120 Q.75 0971 1.0 0.84 1.37
Bone No. 4 124 1.00 0.629 1.0 0.63 1.63
Bone No. § 120 1.00 0.608 1.0 0.61 0.22
Bone No. 6 14.1 0.65 0.489 1.0 0.39 0.56
Mecin

2,456 14.40 0.79 0.49 1.0 045 —
Standard

deviation 3.26 0.25 018 0 0.22 —

substantially to the energy absorption to failure of
bone. Katz (1980), in modelling the classical elasticity
ol bone on the basis of composite theory, considered
the osteon to represent one level in 3 hicrarchical
analysis. Lakes and  Saha (1979) examined the
boundary between osteons as a mechanism for time
dependent response of hone. The present study
suggests i role for the osteon as a cause for nonclassical
clastic behavior. The osteonal structure of human
compact bone, then, has many conscquences in the
binmechanics of bane.

Ellis and Smith (1967) have commented ncpatively
regarding the relationship between the characteristic
fength and the size of structural clements in metals: “In
fact, should there he any couple stress eflect at all, it
would have to be associated with a value of [ .. of the
order of the grain size ... . In order for the couple stress
to significantly alter the classical result one must deal
with shects which are | grain thick. Under such
conditions, isotropic continuum theory will break
down ..." We do not consider this view to be generally
applicable to all materials which might be modelled by
a peneralized continuum theory. In the ease of bone,
there is a considerable range of specimen size for which
micropolar theory rather than classical clasticity s
clearly preferable. In this range we do not see that
chaotic behavior which  would characterize total
breakdown of continuum theory. Eringen (1968) has

-anticipated this situation and has deseribed such an

intermediate zone of sizes as the region of the micro-
continuum.

The potential significance of micropolar clasticity in
bone is that stress fields predicted from this theory
differ from the predictions of classical clasticity. The
difference between these theories is most pronounced
m regions of high strain eradient, c.g. near @ hole or
near an interface. Holes and interfaces are routinely
generated in orthopaedic surgery on bone. Bone
prosthesis systems are now analyzed on the basis of
classical elasticity. Prostheses are designed in view of
such stress analyses, to minimize the incidence of
prosthesis loosening and failyre, and hone resorption,
We shall consider micropolar effcets in the stress

analysis ol bone, in a future study, to ascertain whether
they are important in clinically relevant situations.

CONCLUSION

Effects describable by the micropolar theory of
clasticity have heen observed in human compact bone.
The average characteristic length for bending is
0.45mm. Small specimens 2-3mm in diameter are
stiffened by about a factor of two by micropolar cffects.
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NOMENCLATURE

a Specimen radius, in mm

d Specimen diameter, in mm

e Small strain  tensor, G = Mg+ owg)
dimensionless

Chrm Permutation symbhot

2 Young's modulus, in N/m?

G Shear modulus, in N/m?. In micropolar elasticity,
G =p+ (x/2)

J Flexural rigidity, in N -m?

i Characteristic length as a constitutive parameter
in couple stress theory, in mm

() Characteristic length in hending in couple stress

theory, in mm.
lyy = (G/EY'? i + v+ Zv(q'/r,)]' ?

L/ Characteristic length in bending in micropotar
theory, in mm.
(2 =N/ = [)’/(2(2I‘ + K))]Hz

s Characteristic length in bending in micropolar
theory, in mm.
foy = 20,,(G/E)' 2

", Couple stress tensor, in N/m
Coupling number in micropolar theory. N? =
x/2(t + x), dimensionless

r Macrorotation  vector, n=ey,n, . dimen-
sionless

R Bending radius of curvature, in mm

fe Force stress tensor, in N/m?

@ By, k. Micropolar elastic constants in constitutive

equation, «, fl, y in N; x in N/m?
6! Length parameter for bending of a micropolar rod.
870 = [y(n + nYa(2p + K)]t7

8 Kronecker delta, dimensionless

non Couple stress elastic constants, in Newtons

v Poisson’s ratio, dimensionless

[0} Ratio of micropolar to classical Nexural rigidity,

dimensionless.

s s+ e

Tt S

e e i e e .
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