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Abstract

Pure bending experiments on prismatic bars of square cross-section composed of reticulated
polymer foam exhibit deformation behavior not captured by classical elasticity theory. Perhaps
the clearest example of this is the observed sigmoidal deformation of the bars’ lateral surfaces,
which are predicted by classical elasticity theory to tilt but remain planar upon pure moment
application. Such foams have a non-negligible length scale compared to the bars’ cross-section
dimensions, whereas classical elasticity theory contains no inherent length scale. All these
facts raise the intriguing question: is there a richer, physically-sensible, yet still continuum
and relatively simple elasticity theory capable of modeling the observed phenomenon in these
materials? This paper reports our exploration of the hypothesis that Cosserat elasticity can. We
employ the principle of minimum potential energy for homogeneous isotropic Cosserat elastic
material in which the microrotation vector is taken to be independent of the macrorotation
vector (as prior experiments indicate it should be in general to model such materials) to obtain an
approximate three-dimensional solution to pure bending of a prismatic bar having a square cross-
section. We show that this solution, and hence Cosserat elasticity, captures the experimentally-
observed nonclassical deformation feature, both qualitatively and quantitatively, for reasonable
values of the Cosserat moduli. A further interesting conclusion is that a single experiment – the
pure bending one – suffices to reveal directly, via the observation of surface deformation, the
presence of nonclassical elastic effects describable by Cosserat elasticity.
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1 Introduction

For many purposes it is expedient to make use of continuum representations of materials, all of
which actually have microstructure. Several such continuum theories with different amounts of
freedom are available. An early theory of Navier called uniconstant was proposed based on atomic
interaction theory. It had too little freedom and was abandoned since it predicted a Poisson’s ratio
of 1/4 for all materials. The elasticity theory currently accepted as classical allows Poisson’s ratios
in isotropic materials in the range −1 to 1/2. Translations of points are allowed but not point
rotations. Classical elasticity has no length scale. By contrast, Cosserat elasticity allows rotations
of points and has a length scale, so it is pertinent to the deformation of heterogeneous materials
whose heterogeneity size scale is not negligible compared to dimensions of a structural component
or the sizes of e.g. holes or cracks, or the length scale of the phenomenon under investigation, such
as wavelength in a wave propagation problem. Too, the toughness of materials has a length scale;
the value of this length cannot be extracted from the classical elastic properties of the material. The
toughness of foams is calculated by considering a crack in the foam under tension, and analyzing
the bending of the cell ribs [1]; the toughness depends on the cell size in the foam.

The constitutive equations for an isotropic Cosserat [2] or micropolar [3] elastic solid are

σij = 2Gεij + λεkkδij + κeijk(rk − φk) (1)

mij = αφk,kδij + βφi,j + γφj,i (2)

in which σij is the force stress tensor (symmetric in classical elasticity but asymmetric here), mij

is the couple stress tensor (moment per unit area, asymmetric in general), εij = (ui,j + uj,i)/2
is the small strain tensor, ui the displacement vector, and eijk is the permutation symbol. The
microrotation vector φi in Cosserat elasticity is kinematically distinct from the macrorotation vector
ri = (eijkuk,j)/2. φi refers to the rotation of points themselves, while ri refers to the rotation
associated with movement of nearby points. The usual Einstein summation convention for repeated
indices is employed, and a comma denotes differentiation with respect to ensuing subscripts which
represent spatial Cartesian coordinates.

Some authors, e.g. [4], object to the notion of an independent microrotation vector. If one
assumes, following Koiter [5] (who did so for simplicity), that the macrorotation and microrota-
tion vectors are equal, then in Cosserat elasticity, N = 1, or equivalently κ → ∞ [see Eq. (8)].
Careful size effect experiments, however, give measured N values that are significantly smaller than
unity [6, 7]. Furthermore, the notion of independent microrotation is confirmed theoretically in
homogenization analyses for various lattices and composites; see e.g. [8] and several references cited
therein. Although prior experiments exclude N = 1 for foams and bone, they do not necessarily
exclude the presence of additional freedom such as that incorporated in micromorphic / Mindlin
microstructure theory.

As Eqns. (1, 2) show, six independent elastic constants are required to describe general three-
dimensional deformations of an isotropic Cosserat elastic solid: α, β, γ, κ, λ, and G. (Eringen [3]
uses 2µ+ κ = 2G, so µ differs from the shear modulus G in his notation.) Classical elasticity is a
special case, achieved by allowing α, β, γ, κ to become zero. The classical Lamé elastic constants
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λ and G then remain, and there is no couple stress. Technical constants are as follows:

Y oung′s modulus E =
(2G)(3λ+ 2G)

2λ+ 2G
(3)

Shear modulus G (4)

Poisson′s ratio ν =
λ

2(λ+G)
(5)

Characteristic length, torsion `t =

√
β + γ

2G
(6)

Characteristic length, bending `b =

√
γ

4G
(7)

Coupling number N =

√
κ

2G+ κ
(8)

Polar ratio Ψ =
β + γ

α+ β + γ
. (9)

Continuum theories make no reference to structural features; however, they are intended to
represent physical solids which always have some form of microstructure. The couple stresses in
Cosserat and microstructure elasticity represent spatial averages of distributed moments per unit
area, just as the ordinary (force) stress represents a spatial average of force per unit area. While
such moments can occur on the atomic scale or the nano scale, moments may be also transmitted
on a much larger scale, through fibers in fiber-reinforced materials or in the cell ribs or walls in
cellular solids. The Cosserat characteristic lengths will then be associated with the physical size
scales in the microstructure, and be sufficiently large to observe experimentally on the micro-scale
or the milli-scale.

Structures of sufficient regularity can be subject to homogenization analysis to extract the elastic
constants, including Cosserat constants. In lattice type cellular solids the characteristic length may
be comparable to the average cell size [9]. Bigoni and Drugan [10] derived homogeneous Cosserat
material moduli that best represent heterogeneous Cauchy material behavior under general loading.
They applied this to two specific matrix-inclusion composite microstructures: one with cylindrical
inclusions (2D plane strain), and one with spherical inclusions (3D). They showed the Cosserat
characteristic length can be determined analytically when inclusions are less stiff than the matrix,
but when these are equal to or stiffer than the matrix, Cosserat effects were shown to be excluded.

Cosserat elastic effects have been observed experimentally. For example, size effects are ob-
served to occur in torsion and bending of foams [6, 7] and of compact bone. Size effect in bone
exceeds a factor of three in effective shear modulus [11]. Classical elasticity predicts effective shear
modulus independent of specimen size. Experiments show the apparent modulus increases substan-
tially as the specimen diameter becomes smaller. The Cosserat continuum concept accounts for
these observations. From a micro-structural perspective, a contribution to the twisting or bending
moment arises from twist or bend of each individual fiber in fibrous materials or each rib in cellular
solids, hence size effects. Heterogeneous structure does not necessarily give rise to size effects: no
size effects were observed in particulate composites with large particles [12] nor in syntactic foams
that contain small particles [6], and as mentioned Bigoni and Drugan [10] showed theoretically that
no Cosserat effects occur for inclusions stiffer than the matrix (for cylindrical inclusions in plane
strain, and for spherical inclusions in 3D). The Cosserat characteristic length was determined in a
polymer honeycomb as a two dimensional system [13]. On smaller scales, asymmetric interatomic
action was studied in magnetic media; the existence of non-central load was demonstrated with
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electron paramagnetic resonance [14].
Experiments are interpreted with the aid of analytical solutions for the configuration under

study. For example, analytical solutions are known for torsion [12] and bending [15] of an isotropic
Cosserat linear elastic circular cylinder. These analyses disclose size effects in structural rigidity
in which slender rods are stiffer than predicted by classical elasticity using moduli obtained in the
absence of gradients.

Changes in the surface deformation field are of particular interest in experiments. For example,
a bar of rectangular cross section in torsion exhibits warp, an in-plane deformation parallel to the
surface. The classical warp is predicted to be reduced in a Cosserat elastic solid [16]; this gives rise
to an observed redistribution of strain away from regions that are classically highly strained [17]
[18] into classically low strain regions. This ameliorates concentration of strain. The reduction of
warp has been observed via holography [19].

Bending of Cosserat elastic bars of non-circular cross section is of interest in the context of
change in deformation field. Saint Venant’s problem has been considered in an abstract sense
that shows existence of solution [20]; bending has been considered in terms of functions to be
determined [21]. A plane stress approximation for κ→∞ was presented, showing changes in stress
fields [22], hence size effects. Plate bending also discloses size effects in the rigidity [12]. Several
beam theory analyses have been presented [23]; cross section shape change was not considered.
A three dimensional analysis was presented [24] in which constraints on the lateral deformation
were imposed. In summary, none of the available studies of bending deals with deformations of a
prismatic bar of square cross section subjected to pure bending.

Previous experiments on two foam types have provided the following values for the isotropic clas-
sical and Cosserat elastic moduli (via the technical constants of Eqs. (3-9)): For dense polyurethane
foam [6], E = 300 MPa, G = 104 MPa, ν = 0.4, `t = 0.62 mm, `b = 0.33 mm, N2 = 0.04, Ψ =
1.5. This is a closed cell foam of density 340 kg/m3; the cell size is 0.05 to 0.15 mm.

For polymethacrylamide closed cell foam type Rohacell WF300 [7], E = 637 MPa, G = 285
MPa, `t = 0.8 mm, `b = 0.77 mm, N2 ≈ 0.04, Ψ = 1.5. This is a closed cell foam of density 380
kg/m3; the cell size is 0.65 mm. Inference of Poisson’s ratio from Young’s and shear modulus gives
ν = 0.12; the low value is likely due to slight anisotropy in the foam. Other polymethacrylamide
foams studied in this series had density 110 kg/m3 and 60 kg/m3; characteristic lengths were
somewhat smaller; N was not accurately determined owing to the difficulty in cutting sufficiently
slender specimens.

Thus, in these previously-tested foams, `b ranged between approximately 1.2 to 6.6 times the
cell size. As noted, these were closed-cell foams, in contrast to the open-cell foams tested in the
present work.

The present research explores bending of a bar of square cross section in which Cosserat effects
give rise to out of plane effects normal to the surface. Such effects are particularly amenable to
experiment.

2 Experiment

2.1 Materials and methods

Bars of open cell reticulated polyurethane foam (Scott Industrial foam [25]) were used. They were
50 mm in square cross section and about 300 mm long. One foam had average cell size 1.2 mm or
20 pores per inch (Figure 1); the other foam had average cell size 0.4 mm (Figure 2). The mass and
dimensions of each bar were measured. Flat stalks about 30 cm long were cemented to each end.
Displacement of the surface was measured via digital photography. Shadow Moiré was attempted
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Figure 1: Open cell polyurethane foam. Scale bar, 5 mm.

Figure 2: Portion of the bent 50 mm wide test beam of 0.4 mm cell size foam viewed at an oblique
angle.

but surface roughness and light penetration precluded useful fringes. The foam bar was placed on
an optical table and a digital camera was mounted at an oblique angle above it. Fiducial cross
section lines were drawn on the foam with ink or acrylic paint. Pure bending was achieved by
bringing the ends of the stalks into contact. The stalk length defined the radius of curvature R =
27.5 cm from the neutral axis. Sigmoid bulge was sufficient to be discerned by the unaided eye.
The maximum strain was 4.5%, within the linear range for this class of foam. Digital photographs
were taken before and after bending. A thin straight line was drawn digitally on each image from
corresponding points at the edges. These points were used as reference points corresponding to
zero motion; this procedure eliminates the effect of classical tilt. Displacements were measured on
the images via GIMP image processing software. No averaging or smoothing was done. Pixel count
was converted to displacement using the known width of the bar; the scale factor was about 30
pixels per millimeter. Because the end points correspond to zero motion, the tilt deformation of
the lateral surfaces is subtracted out. Several such experiments were done. Curve fits of sinusoidal
form serve as guides to the eye. Tilt deformation was evaluated via photographs taken from an
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orthogonal direction.
Tests were also done to probe anisotropy. Cubes of foam were cut and compressed to less than

5% strain in a servo-hydraulic frame. Compression was done in each of three orthogonal directions
to determine moduli.

2.2 Results

Results are shown in Figure 3. The lateral surface exhibits a sigmoid bulge deformation in which
the magnitude is larger for the larger cell foam. Scatter in the points arises from heterogeneity in
the deformation of the foam cells. The density of each foam was ρ = 0.030 g/cm3 or 30 kg/m3. Tilt
deformation is not shown in the graphs because the image processing method defines the motion
at the edges (i.e., corners) to be zero. Scatter of the points is attributed largely to the non-affine
deformation known to occur in foams. Pixel resolution also contributes to the scatter for the smaller
cell foam.

The foam with 1.2 mm cells had a ratio of moduli in different directions of 1.6, indicating
substantial anisotropy; the foam with 0.4 mm cells was isotropic to within 10%.

Figure 3: Deformation uy vs. position, excluding tilt; left, larger cell foam, cell size 1.2 mm; right,
cell size 0.4 mm. Comparison of the two figures shows the sigmoidal displacement is increased for
larger pore size, implying a local length scale effect that suggests modeling via Cosserat theory.

3 Bending analysis

3.1 Three-dimensional governing equations for a Cosserat medium

The complete governing equations for three-dimensional infinitesimal deformations of a homoge-
neous, isotropic linear elastic Cosserat medium in equilibrium with no body forces are the con-
stitutive equations (1) and (2), the strain-displacement and macrorotation-displacement equations
noted earlier, namely

εij = (ui,j + uj,i)/2 (10)

ri = (eijkuk,j)/2, (11)
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and the equations of force and moment equilibrium, respectively

σij,i = 0 (12)

mij,i + ejklσkl = 0. (13)

For all boundary portions on which displacements are not prescribed, the force traction vector ti
and the moment traction vector mi must be prescribed; these are related through the boundary’s
outward unit normal vector ni to the force and couple stress tensors as

ti = σjinj , mi = mjinj . (14)

3.2 Classical three-dimensional pure bending solution

The classical three-dimensional displacement field solution for pure bending of prismatic bars in
homogeneous, isotropic linear elasticity is

ux = −z
2 + ν(x2 − y2)

2R
, uy = −ν xy

R
, uz =

xz

R
, (15)

where R is the principal radius of curvature of bending (produced by pure moments about the
y-axis in Figure 4). Substitution of Eqs. (15) into Eq. (10) gives the strain field

εxx = εyy = −ν x
R
, εzz =

x

R
, all other εij = 0. (16)

When the Cosserat moduli α, β, γ, κ are all zero, substitution of Eqs. (16) into (1) gives the stress
field

σzz = 2G(1 + ν)
x

R
, all other σij = 0. (17)

This clearly satisfies the equilibrium equations (12) and zero force traction vector on all beam
surfaces except the ends; thus, as is well known, the stress distribution (17) and its associated
displacement (15) and strain (16) fields is an exact three-dimensional classical elasticity solution
for pure bending of a prismatic bar when the pure bending moments are applied to the bar ends
by a normal stress distribution given by σzz in (17).

In the classical displacement field solution of Eq. (15), applied to a bar of square cross-section
as considered here, dependence on ν in ux represents the anticlastic curvature of bending, while
displacement uy represents tilt of lateral surfaces due to the Poisson effect. We emphasize that the
displacement component uy exhibits purely a linear dependence on x, meaning that the originally
vertical sides of the beam tilt, but remain planar - see Figure 4. However, the experimental
measurements reported in Figure 3 clearly show that the foam beam sides deform to a non-planar
shape. We now investigate whether Cosserat elasticity is able to capture this deformation feature
not exhibited by classical elasticity.

3.3 Can the classical bending solution also solve Cosserat bending?

As just reviewed, (15) is an exact three-dimensional solution to the classical elasticity governing
equations and boundary conditions for pure bending of a prismatic bar. We wish to find the three-
dimensional displacement field solution for pure bending of a square-cross-section bar composed of
Cosserat elastic material. We first explore, following Koiter [5], the degree to which the classical
displacement field (15) can be a solution; we begin by temporarily making the simplifying assump-
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Figure 4: Deformed shape of a bar of initially square cross-section experiencing pure bending by
moments at ends acting in the positive-y direction, showing anticlastic curvature and tilt of lateral
surfaces.

tion he made: that the Cosserat microrotation φi = ri. (This equality is forced if κ
G → ∞.) This

assumption means, using (15) in (11), that

φx = 0, φy = −z/R, φz = −νy/R. (18)

The strain field (16) is unchanged; when it and φi = ri are substituted into (1) with nonzero
Cosserat moduli, and (18) are substituted into (2), we obtain the following Cosserat force and
couple stress fields, respectively:

σzz = 2G(1 + ν)
x

R
, all other σij = 0. (19)

myz = −β + γν

R
, mzy = −βν + γ

R
, all other mij = 0. (20)

These fields exactly satisfy all the equilibrium field equations (12, 13). If on the beam ends the
force and couple traction vectors are applied in accord with (14, 19, 20), the boundary conditions
are exactly satisfied everywhere, except for the requirement of zero applied myz on the beam’s
y = constant lateral surfaces. Eqs. (20) show this latter requirement can be met exactly only if
β/γ = −ν . If β/γ 6= −ν, the above solution is exact only if a uniform myz, equal to that given
in Eqs. (20), is applied everywhere on the beam’s y = constant lateral surfaces. Thus, when the
beam’s lateral surfaces are force and moment traction-free, as in the experiments described above,
and the material’s β/γ 6= −ν, the deformation field must be non-classical.

Size effects are predicted by calculating the total moment acting on the beam ends due to
the force stress and couple stress distributions. As a simple illustration, for the case β/γ = −ν,
the above solution is an exact Cosserat one as noted. Eqs. (20) then show that mzy 6= 0, so it
contributes to the total moment along with σzz, giving the result (I is the area moment of inertia):

M =
EI

R
[1 + 24(

`b
2a

)2(1− ν)]. (21)
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3.4 Approximate three-dimensional Cosserat bending solution

As an exact closed-form three-dimensional Cosserat bending solution does not appear to be possible
(except if β/γ = −ν as just noted), we derive a simple approximate solution. This is accomplished
by deriving the correction to the classical displacement field solution of Eqs. (15) and associated
micro-rotation field of Eqs. (18) needed to remove the myz distribution on the y = constant lateral
beam surfaces. The approximate three-dimensional Cosserat solution is then the superposition of
Eqs. (15, 18) and the correction fields derived next.

We now analyze the correction problem of a beam of square cross-section of side length 2a (lying
in the x, y-plane of Figure 4) having force- and moment-traction-free sides except that

myz =
β + γν

R
on y = ±a. (22)

Our approach is to employ polynomial representations for the displacement and Cosserat microro-
tation components that will be nonzero in this correction problem, employing polynomials of just
sufficiently high order that they will be capable of representing the nonlinear antisymmetric lateral
beam side distortions exhibited by the experiments. Specifically, we seek an approximate solution of
the form, with the constants ai, bi, ci being initially undetermined and rigid-body motion excluded:

ux = a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3 + a8x
4 + a9x

3y + a10x
2y2 + a11xy

3 + a12y
4

uy = b1x
2 + b2xy + b3y

2 + b4x
3 + b5x

2y + b6xy
2 + b7y

3 + b8x
4 + b9x

3y + b10x
2y2 + b11xy

3 + b12y
4

φz = c1x+ c2y + c3x
2 + c4xy + c5y

2 + c6x
3 + c7x

2y + c8xy
2 + c9y

3

uz = φx = φy = 0. (23)

We determine the best possible solution of the form given in Eqs. (23) by employing the principle
of minimum potential energy. For a general three-dimensional body of homogeneous, isotropic,
linear elastic Cosserat material contained in volume V having surface S, the total potential energy
is given by

Π =

∫
V
WdV −

∫
S

(tiui +miφi)dS, (24)

where

W = Gεijεij +
λ

2
(εkk)

2 + κ(ri − φi)(ri − φi) +
1

2

[
α(φk,k)

2 + βφi,jφj,i + γφi,jφi,j
]
. (25)

This is applied to the correction problem described. The fields produced by our assumed solution
form, Eqs. (23), make the integrand of the surface integral in Eq. (24) zero on the bar ends, and all
the fields in Eqs. (23) are independent of z, so in Eq. (24) the volume integral becomes an in-plane
area integral and the surface integral an in-plane line integral with S now referring to the lateral
surface of the bar. The lateral surface boundary conditions require ti = 0 and mi = 0 everywhere
on S except, in accord with Eqs. (14, 22), mz = ±(β + γν)/R on y = ±a, respectively. Using
these prescribed tractions, Eqs. (23), using Eq. (11), are substituted into Eq. (24) with Eq. (25),
the integrations in Eq. (24) are carried out, and the resulting total potential energy is minimized
with respect to all the constants appearing in Eqs. (23). This procedure shows that most of those
constants are zero (and thereby shows the symmetries and antisymmetries of the displacement and
micro rotation components); renaming the surviving constants, the nonzero members of Eqs.(23)
reduce to the following (where 1/a2 is introduced as indicated so all constants have the same
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dimensions and their resulting solutions are simplified):

ux = a1x
2 + a2y

2 +
1

a2
(
a3x

4 + a4x
2y2 + a5y

4
)

(26a)

uy = b1xy +
1

a2
(
b2x

3y + b3xy
3
)

(26b)

φz = c1y +
1

a2
(
c2x

2y + c3y
3
)
. (26c)

We now employ the following substitutions, obtained from Eqs.(5, 7, 8):

λ =
2Gν

1− 2ν
, γ = 4G`2b , κ =

2GN2

1−N2
. (27)

The values of the constants in Eqns. (26) from the potential energy minimization then depend only
on ν, `b, N, β/γ, a and R:
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a1 = d

{
N4
(
7− 19ν + 18ν2

)
+ (`b/a)2N2

[
371− 1294ν + 1052ν2

− 6N2
(
35 + 44ν − 156ν2 + 98ν3

) ]
+ 18(`b/a)4

[
245− 952ν + 728ν2

− 12N4
(
7− 4ν − 31ν2 + 28ν3

)
− 4N2

(
112 + 81ν − 486ν2 + 266ν3

) ]}
a2 = −a1

4− 3ν + ν2

ν2
+ 2a3

44− 109ν + 56ν2

7ν2
− a4

4 + 13ν − 8ν2

3ν2

a3 =
7

6

[3a1 + (1 + ν)a4][(a/`b)
2/18 + 1/N2 − 1]− νa4

3 + [1/N2 + (a/`b)2/18](4− 7ν)

a4 = −21d

{
N4(1− ν)2 + (`b/a)2N2

[
53− 147ν + 88ν2 − 6N2

(
5− 9ν + 4ν2

) ]
+ 18(`b/a)4

[
35− 111ν + 70ν2 − 12N4

(
1− 3ν + 2ν2

)
− 2N2

(
32− 64ν + 29ν2

) ]}
a5 = a1

19− 3ν

6ν2
− a3

209− 565ν + 287ν2

21ν2
+ a4

19 + 73ν − 44ν2

18ν2

b1 = a1
1− 4ν + 2ν2

ν2
− (1− 2ν)

(
2a3

11− 14ν

7ν2
− a4

1 + 2ν

3ν2

)
b2 = −4

1− ν
ν

a3 (28)

b3 = −2(1− ν)

3ν
(3a1 + a4)− b1

c1 = −
6a2 + 3(b1 + b2)

(
1− 2N2

)
+ 2

(
a4 + c2N

2
)

6N2

c2 =
3b2/2− a4

1 + 18(`b/a)2(1/N2 − 1)

c3 = b3 −
4a5 + b3

2N2

where

d =
15(`b/a)2N2(β/γ + ν)

4R
/

{
N6(22− 19ν) + 3(`b/a)2N4

[
462− 399ν +N2

(
301− 612ν + 290ν2

) ]
+ 270(`b/a)6

[
12N6(1− ν)2(5− 14ν) + 7(22− 19ν) +N2

(
767− 1522ν + 728ν2

)
+ 4N4

(
139− 438ν + 432ν2 − 133ν3

) ]
+ 3(`b/a)4N2

[
305(22− 19ν)

+ 3N2
(
4439− 9172ν + 4435ν2

)
+ 6N4

(
407− 1357ν + 1195ν2 − 245ν3

) ]}
.

Observe that the b2 term in Eqns. (26) represents the sigmoid bulge. The magnitude of the
bulge effect is governed by d ∝ (βγ + ν), as expected. If `b << a, then d ∝ ( `ba )2; see Eqns. (30)
below.

As these expressions for the constants simplify substantially for a specific ν value, we present
their reduced forms for the case ν = 0.3, which applies to the 0.4 mm cell size foam tested (the ci
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expressions are unchanged and thus are not repeated):

a1 =
d

250

[
730N4 + (`b/a)2N2(19370− 55209N2) + 36(`b/a)4(3115− 49871N2 − 5649N4)

]
a2 = −(6699a1 − 9804a3 + 5026a4)/189

a3 =
7

6

[30a1 + 13a4][(a/`b)
2/18 + 1/N2 − 1]− 3a4

30 + 19[1/N2 + (a/`b)2/18]

a4 = −21d

100

[
49N4 + 2(`b/a)2N2(841− 798N2) + 36(`b/a)4(400− 1541N2 − 168N4)

]
a5 = (19005a1 − 19599a3 + 12929a4)/567

b1 = − 2

189
(21a1 + 816a3 − 224a4) (29)

b2 = −28

3
a3

b3 = −14

9
(3a1 + a4)− b1

where

d =
75(`b/a)2N2(3 + 10β/γ)

2R
/

[
1630N6 + 108(`b/a)6(28525 + 93980N2 + 42889N4 + 1176N6)

+ 3(`b/a)4N2(497150 + 625965N2 + 60501N4) + 210(`b/a)2N4(489 + 205N2)

]
.

The case `b
a << 1 also permits substantial simplification in that higher-order terms in `b

a are
then negligible, but the quality of such an approximation depends on N . For the value N = 0.62
used in the next section, to keep truncation error below about 5%, it is necessary to have `b

a < 0.01.
The specimens in this study were not sufficiently thick to use such a simplification, so we have
employed Eqs. (29) in our upcoming comparison with the experiments.

Nevertheless, when `b
a is sufficiently small that higher-order terms in `b

a are truly negligible, the
expressions for the constants in Eqs. (28) simplify so substantially, for arbitrary ν, that we present
their simplifications below. These are provided with the caution that one must ensure from the
full forms in Eqs. (28) that, for the given material’s N value, `ba is indeed sufficiently small that its
higher-order terms are negligible. Observe that all expressions to follow are accurate to O[(`b/a)2]
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except that for b1, which for similar accuracy has terms through O[(`b/a)4] retained:

a1 = d
(
7− 19ν + 18ν2

)
, a2 = d

(
25− ν − 18ν2

)
, a3 = −7

2
dν(3− ν)

a4 = −21d(1− ν)2, a5 = −7

6
d
(
44− 35ν − 3ν2

)
b1 = 2d

{
(1− ν)(5− 18ν)

+

(
`b
a

)2 [ 1

N2

(
258− 197ν − 82ν2

)
+

3(1− ν)

22− 19ν

(
3203− 1836ν − 2758ν2 + 1496ν3

)]}
b2 = 14d(3− ν)(1− ν), b3 = 14dν(1− ν), c1 = − 2d

N2

[
22− 19ν − 6N2(1− ν)(2− 3ν)

]
c2 = 42d(2− ν)(1− ν), c3 =

14d

3N2

[
22− 19ν + 3N2ν(1− ν)

]
where

d =
15

4

β/γ + ν

22− 19ν

(`b/a)2

R
.

(30)

3.5 Comparison of Approximate Cosserat Solution with Experimental Mea-
surements

To compare the approximate solution obtained in the previous subsection with the experimental
measurements, we employ the following values corresponding to the foam bars tested:

a = 25mm, R = 27.5cm. (31)

Because the foam with the 1.2 mm cells is anisotropic (modulus ratio about 1.6), and the approxi-
mate solution is for an isotropic Cosserat material, we compare our results with the measurements
on the foam with the 0.4 mm cell size. The Poisson’s ratio of this foam was measured previously [26]
to be approximately 0.3, the value also given by [1] as the mean of many measurements by various
authors. We choose β/γ = 1 based on the results of [27], who performed homogenization analysis
of a 3-D cubic lattice. If one tunes the rigidity of diagonal members in their lattice to obtain elastic
isotropy, then β

γ → 1. No Cosserat model was available for foam. The approximate analytical
solution does show that one must have β/γ > 0 to produce the same bulge sign as observed in
the experiments. The solution also shows that the bulge displacement magnitude increases with
increasing β/γ (whose maximum permissible value is 1).

With a,R, ν and β/γ so specified, the displacement field approximate solution contains only
the unknowns `b and N . These are obtained by matching the analytical displacement field with
the experimental measurements for the smallest possible `b. The values thus obtained are

`b = 4.5mm, N2 = 0.39. (32)

These values have been used in the plot of our approximate analytical solution for uy shown in
Figure 5 where, as was done in the presentation of the experimental data, we have plotted the full
uy with the tilt (linear) portion removed in such a way that the displacement at the cross-section
corners vanishes. Observe the qualitative, as well as quantitative, agreement with the experimental
measurements reported in the right plot of Figure 3.

A single bending experiment cannot determine all Cosserat moduli. Our goal in this theory-
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Figure 5: Approximate Cosserat analytical solution for lateral side displacement uy (with tilt
portion removed) vs. position for foam with 0.4 mm cell size.

experiment comparison is to show that an approximate Cosserat solution exhibits the experimentally-
observed behavior not captured by classical elasticity, for reasonable values of the Cosserat moduli.

4 Discussion

Analysis and experiment both reveal that pure bending of a Cosserat elastic bar gives rise to a
non-classical deformation field in which the lateral surfaces exhibit sigmoid bulge superposed on
tilt. Full field bending deformation of a square cross section bar reveals the presence of Cosserat
elasticity via observation of a single specimen. This is simpler than the size effect approach which
entails rigidity measurements of a series of rods of different diameter. Size effects, if measured in
both torsion and bending, allow determination of all six constants, but the method is painstaking.
Observation of sigmoid bulge in bending also reveals the sign of β/γ in a simple manner from a
single specimen.

Analysis also shows via b1 in Eqns. (26) that there is a size dependent contribution to tilt of
the lateral surfaces and via the an coefficients that there is a size dependent contribution to the
anticlastic curvature. Therefore, if the characteristic length is not negligibly small, it is better to
measure Poisson’s ratio in tension or compression rather than in bending, as was done by [26] for
the 0.4 mm cell size foam.

Generalized continuum theories such as Cosserat elasticity, gradient plasticity, and nonlocal
elasticity have been recently popular, in part driven by the study of nano-scale phenomena. Nano-
scale is not required for such effects to be substantial; it suffices that the largest structure size in the
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material be non-negligible in comparison with representative size scales associated with gradients in
applied fields of stress, electric polarization or other fields, holes, notches or cracks, or at least one
structural component dimension. Nonlocal elasticity also provides additional freedom not present
in the classical theory. The nonlocal theory incorporates long range interactions between particles
in a continuum model. Such long range interactions occur between charged atoms or molecules
in a solid. Long range forces may also be considered to propagate along fibers or laminae in a
composite material [28] or in inclusions in random composites [29]. Nonlocality is often presented
in a differential form that entails an approximation to the nonlocal integral [30]. Such a formulation
introduces sensitivity to gradients of the stress or strain. Such gradient forms, termed nonlocal,
have been presented [31] in the context of nano-scale systems. Cosserat elasticity reduces to a
gradient form when κ → ∞ or equivalently N → 1, so there are points of contact between these
formulations.

The toughness of foams [1] increases as the cell size `cell. Observe that toughness depends on
structure size. This is in contrast with the theory of elasticity, which has no length scale within
the theory. Cosserat elasticity is therefore considered to be pertinent to toughness.

5 Conclusions

Pure bending of a square cross section bar gives rise to a sigmoidal deformation of the lateral
surfaces in addition to the usual tilt. This is shown both by a theoretical analysis of the bar as
a isotropic Cosserat elastic solid, and by experiment on a bar of polymer foam. Observation of
deformation of a single specimen reveals the presence of Cosserat elastic effects.
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