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Abstract

Chiral dielectrics are considered from the perspective of continuum representations of spatial heterogeneity.
Static effects in isotropic chiral dielectrics are predicted, provided the electric field has nonzero third spatial
derivatives. The effects are compared with static chiral phenomena in Cosserat elastic materials which obey
generalized continuum constitutive equations. Dynamic monopole - like magnetic induction is predicted in
chiral dielectric media.
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1 Introduction

Chirality is well known in electromagnetics1; it gives rise to optical activity in which left or right handed cir-
cularly polarized waves propagate at different velocities. Known effects are dynamic only; there is considered
to be no static effect2. The constitutive equations for a directionally isotropic chiral material are3,4.

D = kE− g ∂H
∂t

(1)

B = µH + g
∂E

∂t
(2)

in which E is electric field, D is electric displacement, B is magnetic field, H is magnetic induction, k is
the dielectric permittivity, µ is magnetic permeability and g is a measure of the chirality. Optical rotation
of polarized light of wavelength λ by an angle Φ (in radians per meter) is given by Φ = (2π/λ)2cg with
c as the speed of light. The quantity g embodies the length scale of the chiral structure because cg has
dimensions of length. If the chirality arises from structure in the atomic lattice, then the length scale will be
of corresponding dimensions. Chirality is manifest in the relation, Eq. 1, between electric field and electric
displacement, not in Maxwell’s equations Eq. 3 - 6; ρE is electric charge density and JE is electric current
density. Because g multiplies a time differentiated field quantity, effects are dynamic.

On a fine scale, one can visualize a chiral medium as containing helical or screw shaped inclusions (Fig.
1) such that a change in electric field gives rise to a spiral conduction or displacement current which via Eq.
6 gives rise to a magnetic field.

divD = 4πρE (3)

curlE = −1

c

∂B

∂t
(4)

divB = 0 (5)

curlH =
1

c

∂E

∂t
+

4π

c
JE (6)
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Figure 1: Chiral inclusion in a gradient of field (arrows).

The effect of chirality in electromagnetism is therefore considered to be intrinsically dynamic. The best
known manifestation of this chirality is the rotation of the plane of polarization of light: optical activity5 6.
Usually the physical origin of the behavior is asymmetry on the atomic or molecular scale, however, chiral
thin films made of nanometer scale helical columns were designed to exhibit controllable optical rotation7.

We develop in this letter a framework by which the phenomenon of static chirality can occur in dielectric
solids and the relation to chirality in elastic solids. Also dynamic magnetic effects, specifically monopole-like
fields, are demonstrated to be possible in chiral dielectrics.

2 Static chirality in dielectrics

Static chirality is considered in this section; chirality in electromagnetic media is usually considered to be
dynamic. The reason is that chirality has no effect on second rank tensor properties such as the dielectric
tensor or the elasticity tensor. To demonstrate this, consider the tensorial dielectric equation

Di = kijEj (7)

in which kij is the usual dielectric permittivity.
The transformation law for the permittivity tensor under coordinate changes is

k′ij = aimajnkmn =
∂xm
∂x′i

∂xn
∂x′j

kmn (8)

A chiral material is sensitive to an inversion of coordinates. For an inversion, the transformation matrix
is just the negative of a Kronecker delta

aim = −δim (9)

k′ij = (−1)δim(−1)δjnkmn = (−1)2kij = kij (10)

So the dielectric permittivity is unchanged by chirality. Similarly, other material properties, such as
density or thermal expansion or the classical elastic modulus tensor, which are describable by tensors of even
rank, are unchanged by chirality.

Tensor properties of odd rank are zero if there is inversion symmetry because they change sign under
an inversion of coordinates. They can be nonzero only if there is chirality. For example piezoelectricity is
governed by a third rank tensor, and strain gradient elastic theories are governed by a fifth rank tensor.
Piezoelectric solids must therefore be asymmetric with respect to inversion of the coordinates.

A dielectric with chiral microstructure may be regarded as nonlocal. The reason is that a size scale is
associated with chirality. Nonlocality may be expressed as follows.

Di(r) =

∫
kij(r− r′)Ej(r

′)dr′ (11)

in which the dielectric sensitivity kij is function of position. It functions as a kernel which provides
sensitivity to the field in a region of space denoted by spatial coordinates r′. Therefore the constitutive
equation for polarization is modified by writing an expansion in gradient terms in electric field Ej in which
the comma denotes differentiation with respect to the variable represented by the following index.
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Di = kijEj + kijkEj,k + kijklEj,kl + kijklmEj,klm + · · · (12)

Here kij is the usual dielectric permittivity and kijk is a third rank tensor representing the sensitivity to
gradient effects and with units of permittivity times length. The tensors kijkl and kijklm describe sensitivity
to higher gradients in field. Similarly for magnetism,

Bi = µijHj + µijkHj,k + µijklHj,kl + µijklmHj,klm + · · · (13)

As for third rank sensitivity, in a directionally isotropic chiral solid, all third rank sensitivity elements
are said to vanish8. Indeed, for the examples given, (piezoelectricity and the Pockels electro-optic effect),
there is coupling with a symmetric tensor of second rank, stress in the case of piezoelectricity. There is,
however, one isotropic third rank tensor, the permutation symbol. Because it is antisymmetric, there is no
coupling with symmetric properties of second rank. An exception can occur9 in Cosserat elastic solids for
which the stress is asymmetric. As for dielectric materials, there is no requirement of symmetry of third
rank indices in Eq. 12 so nonzero coupling is possible in the isotropic case. However the second term in Eq.
12 is proportional to curl E which gives ∂B

∂t via Eq. 4. So the gradient coupling via an isotropic third rank
sensitivity provides a dynamic chiral effect as anticipated by Eq. 1.

The form of third rank sensitivity differs in anisotropic solids. For a cubic material such as a crystal,
third rank terms need not be antisymmetric. Specifically,13 a third rank property such as piezoelectricity
obeys, in the cubic system, d123 = d213 = d312 (in the reduced notation, d14 = d25 = d36) with all other
elements zero. For this case E1 = k123E2,3 + k132E3,2 = k(E2,3 + E3,2). The corresponding form in
magnetism B1 = µ(H2,3 +H3,2), which resembles a strain in mechanics, is in contrast to curl H, for which
the corresponding term is (H2,3 − H3,2). A lower symmetry is required to achieve nonzero k111 or µ111 .
Elements of that type provide sensitivity to the sort of gradient that occurs in a cone subjected to an axial
field.

Fourth rank elements, as seen above, are unchanged in the presence of chirality. So, static chiral effects
in isotropic chiral materials cannot involve a fourth rank coupling tensor.

Fifth rank coupling is possible. This linear constitutive equation is distinct from fifth rank nonlinearities10

in chiral dielectrics. For isotropic chiral liquids11, the fifth rank tensor in Eq. 12 was expressed (with kchiral
as a number describing the strength of chirality and ejlm as the permutation symbol)

kijklm = kchiral(δijejlm + δilejkm + δjkeilm + δjleikm) (14)

The most general fifth rank tensor12 has ten terms:

kijklm = (C1δlmeijk + C2δkmeijl + C3δkleijm + C4δjmeikl

+C5δjleikm + C6δjkeilm + C7δimejkl + C8δilejkm

+C9δikejlm + C10δijeklm)

(15)

Owing to the form of this isotropic tensor, there must be gradients in several directions to achieve an
effect via Eq. 12. Chirality manifests itself in a directionally isotropic medium in first time derivatives of
the field and in third but not in the first spatial derivatives of the field.

Units of the fifth rank tensor are permittivity times the cube of length. The length scale in the continuum
representation is expected to be related to the structural length scale of the chiral inclusions (Fig. 1). The
characteristic length is usually on the same order as the size of the chiral structural elements. These structural
elements are much smaller than the specimen size for a continuum view of a structured medium to be sensible.
Therefore static chiral effects in the isotropic case are expected to be weak unless the inclusions are designed
to produce a strong effect. An experimental test might be done in the vicinity of a conductor so that the field
is weak but the gradient is large. Specifically, a re-entrant (concave) corner in a conductive medium provides
the potential for a null experiment because the field near the corner should tend to zero for a non-chiral
dielectric, but could be non-zero in the presence of chirality. Moreover there are field gradient components
in several directions. A capacitor with tilted plates would not suffice as an experimental probe because the
gradient in field is in only one direction.
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3 Static chirality in elasticity

As for a comparison with elasticity, chirality has no mechanical effect in classical elasticity which is governed
by a fourth rank tensor, the elastic modulus: Cklij is the usual elastic modulus tensor, εij is the strain and
σkl is the stress.

σkl = Cklijεij (16)

The modulus tensor is of even rank, therefore it is unchanged by an inversion of coordinates. One can
envisage a gradient elasticity relation between stress σkl and strain εij ,

σkl = Cklijεij + Cklijmεij ,m (17)

with a fifth rank elastic modulus tensor Cklijm which can incorporate chirality. As in the case of dielectric
media, the gradient term can be interpreted as the second term of an expansion of a general nonlocal
relationship between cause and effect. Chirality has been analyzed in the context of chiral Cosserat elasticity
which allows a rotational degree of freedom φk of points as well as the usual translation, and a distributed
torque per area mkl. Both Cosserat elasticity and classical elasticity are continuum representations of
materials with microstructure; Cosserat elasticity incorporates more freedom. Chiral elastic materials are
also called hemitropic, noncentrosymmetric or acentric. For a chiral material isotropic with respect to
direction, the constitutive equations are as follows15. Here λ (no relation to wavelength; the same symbol
is used by convention) and G are classical elastic constants, α, β, γ allow sensitivity to strain gradients,
κ governs the degree of coupling between fields, and C1, C2, C3 allow chirality. Certain combinations of
constants have dimensions of length; the characteristic length for torsion is `t = (β+γ2G )1/2.

σkl = λεrrδkl + 2Gεkl + κeklm(rm − φm) + C1φr,rδkl + C2φk,l + C3φl,k (18)

mkl = αφr,rδkl + βφk,l + γφl,k + C1εrrδkl + (C2 + C3)εkl + (C3 − C2)eklm(rm − φm) (19)

Chiral elastic materials can exhibit dynamic effects such as acoustic activity in which the plane of polar-
ization of shear waves rotates16 17. This is analogous to optical activity in chiral dielectric materials.

Static effects are known in chiral elastic solids. Such a material is predicted to twist when subjected to a
tension force, a static effect. In a nonchiral elastic rod, strain due to a tension force is uniform. By contrast,
the deformation field in a chiral elastic rod stretched by constant axial stress becomes three dimensional as
governed by the boundary conditions on the local rotation field at the free surface. The rod twists in response
to tension load. The twisting deformation response to uniform applied stress entails a strain gradient. Effects
of Cosserat characteristic length scales18 and stretch twist coupling occur in elastic media with structure on
a scale from 0.2 mm to 2 mm in bone19 and on a scale of centimeters in a designed chiral polymer lattice20.
Size effects have also been predicted to occur in composite networks of fibers21. A chiral dielectric differs
from a chiral elastic solid in that an an applied static uniform electric field does not generate gradients in
the response field.

Chirality in both elastic and electromagnetic media can be manifest as rotation of polarized waves, and
in both cases the effect is linked to a characteristic length associated with the microstructure (Fig. 1). Static
effects due to chirality can occur in both elasticity and electromagnetism provided there are spatial gradients
of the fields.

4 Coupling with magnetism

Dirac magnetic monopoles have never been observed. If they were to exist, a monopole density ρM would
give rise to a magnetic field via Eq. 5 modified to become div B = 4πρM . A corresponding magnetic current
JM would appear in Eq. 4. A mathematical link between chirality and magnetic monopoles22 has been
suggested in the context of equivalent descriptions of chiral behavior. Chirality can give rise to monopole -
like dynamic fields as shown in the following.

Envisage a spherical capacitor (Fig. 2) filled with chiral dielectric. Suppose that a signal generator creates
a radial electric field sinusoidal in time; Eq. 2 predicts that a radial monopole-like magnetic induction results.
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Figure 2: A spherical capacitor filled with a material containing chiral inclusions.

Specifically, from Eq. 2,

divB = divµH + gdiv
∂E

∂t
(20)

Combining with Eq. 1, and incorporating Eq. 5, that magnetic monopoles are not observed,

divH =
1

µ
[−g ∂

∂t
div

D

k
− g ∂

∂t
div(

g

k

∂H

∂t
)] (21)

With Eq. 3, charge density ρE related to electric displacement,

divH +
g2

µk

∂2

∂t2
divH = −4πg

µk

∂ρE
∂t

(22)

So, a time rate of change in electric charge density (e.g. on the inner sphere) acts as a source of divergence
of magnetic induction H. In the spherical capacitor case H will be radial and will thus resemble the field
of a monopole. Unlike a true monopole, the effect is purely dynamic. Moreover, since the charges on the
inner and outer conductors of the capacitor are equal and opposite, the source term vanishes outside the
capacitor. This is understandable in view of the fact that Maxwellian electromagnetism does not support
the longitudinal waves which would result if a time-varying radial magnetic field extended into free space.
Even so, the outer capacitor conductor can become sufficiently remote that monopole - like fields may be
observed in a large volume of space. Also, solution of Eq. 22 for a region without charge density gives rise to
resonance effects with natural angular frequency

√
µk/ g. One may envisage g as a wave travel time across

the chiral inclusion, but the inclusion itself may have resonant properties as in meta-materials23 24,25. In
such materials, enhanced effects are possible.

5 Discussion

Chirality has traditionally been considered at the molecular scale. Chirality can also be expressed at larger
scales, for example tens of microns in composites7 or centimeters in 3D printed chiral polymer lattice20 or
in designed broadband circular polarizers based on metamaterials26. Consequently, effects associated with
nonlocality can appear on a macrosopic scale. Nonlocality27 is pertinent to dielectric media; nonlocality can
be expressed in terms of an expansion of higher gradients of the independent variable. Nonlocal effects are
known in piezoelectric materials28, which are always chiral. Nonlocality in piezoelectric materials gives rise
to a coupling29 between electric polarization and bending, in addition to the usual coupling with uniform
deformation. The effect increases in magnitude as one approaches a phase transformation in a ferroelectric.
More recently such effects in which there is coupling between mechanical strain gradient and electric polar-
ization, have been referred to as flexoelectric30. Gradient effects are of interest because they can lead to
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more intense response in slender transducer elements made of ferroelectric materials and because they can
result in a smearing of phase transitions31.

The predicted monopole-like effects are dynamic and are distinct from the Dirac monopole which is
expected to be a static elementary particle but has not been observed. Monopole-like entities, considered32

as excitations that manifest like point charges, have been observed in spin ice33, a class of frustrated magnetic
material. Spin ice states are thought to contain arrangements of aligned magnetic dipoles that resemble
solenoidal tubes. The ends of the tubes resemble magnetic monopoles. Such effects require cryogenic
temperatures, in contrast to Dirac monopoles and the dynamic effects studied here.

6 Conclusion

In conclusion, this letter presents new effects in chiral dielectric media, specifically static polarization in
response to third spatial gradients of the electric field. Such effects are analogous to gradient sensitivity
found in elastic solids described by generalized continua. Dynamic monopole-like fields of magnetic induction
are predicted in chiral dielectrics.
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