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 1 Introduction The classical bounds [1] for compos-
ite properties such as modulus, mechanical loss or thermal 
expansion, which are derived under the assumption that 
both matrix and inclusion possess positive stiffness, state 
that these properties cannot surpass those of constituents. 
However, such bounds can be exceeded given the exis-
tence of negative-stiffness inclusions [2]. Negative stiff-
ness is presented as the occurrence of a reaction force in 
the same direction as imposed deformation, and is 
achieved by stored energy at quasi-equilibrium [2]. Jag-
linski et al. [3] studied a composite material, of polycrys-
talline BaTiO3 particle inclusions embedded in tin matrix, 
which attained a stiffness (Young’s modulus) almost ten 
times greater than that of diamond via inclusions capable 
of the “tetragonal ↔ cubic” phase transition. The extreme 
stiffness was attributed to the negative bulk modulus of 
this ferroelastic inclusion during its phase transition. With 
the aim of directly observing the softening of the bulk 
modulus hypothesized in the design of the above compos-
ite, we have studied the mechanical properties (modulus 

and the corresponding mechanical loss) of pure polycrys-
talline BaTiO3 by means of Broadband Viscoelastic Spec-
troscopy (BVS). 
 To examine the trend of the viscoelastic properties in 
BaTiO3 ceramic near the “tetragonal ↔ cubic” phase tran-
sition, two sets of experiments were undertaken: (1) Ther-
mal scans were performed in which the temperature of the 
specimen was either raised or lowered through the Curie 
point while the viscoelastic properties (mechanical loss and 
modulus) were measured at fixed excitation frequency. 
Theories (see Table 1 in Ref. [4]) predict that mechanical 
loss will depend on both the rate of temperature change 
and the excitation frequency at which the viscoelastic 
properties are measured. Our observations are in accord-
ance with those theories and the previous experimental re-
ports on BaTiO3 ceramic [5, 6] as it undergoes the 
“tetragonal ↔ cubic” phase transition. (2) Isothermal 
broadband viscoelastic spectroscopy tests were performed 
measuring the viscoelastic properties of the specimen at 
temperatures near the Curie point and as a function of the 

Characterization of pure polycrystalline BaTiO
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excitation frequency spanning almost six decades. These 
experiments allowed us to examine in detail the properties 
of polycrystalline BaTiO3 over a range of conditions hith-
erto unexplored. They also allowed us to minimize the 
thermal gradient in the specimen inherent to temperature 
scans. To help in understanding the viscoelastic measure-
ments, differential scanning calorimetry was carried out to 
identify the exact transition temperature. 
 
 2 Experimental method A BaTiO3 specimen with a 
bar shape was sectioned from a large polycrystalline  
BaTiO3 rod by means of a BUEHLER ISOMET low speed 
diamond saw. The rod was sintered from Ticon-HPB pow-
der (Ferro Electronic Materials, Niagara Falls, NY) at 
1350 °C for 1 hour. The specimen was then polished into 
regular shape. Its final dimension was 28.94 mm length 
with rectangular cross section of 2.45 × 2.79 mm, and its 
density was found to be 5.43 × 103 kg/m3. The Young’s 
modulus, shear modulus, and mechanical loss of this 
specimen were measured by means of BVS from ambient 
temperature to 160 °C at sub-resonant frequencies (10 Hz, 
20 Hz, 50 Hz), and from 0.001 Hz to approaching natural 
frequencies isothermally. Broadband Viscoelastic Spec-
troscopy (BVS) [7] is capable of studying viscoelastic 
properties of thermorheologically complex materials, in 
both torsion and bending, over eleven decades of time and 
frequency in an isothermal environment or by scanning a 
single frequency over time while the temperature is varied. 
Oscillatory torsional or bending torques were applied by 
driving a sinusoidally varying voltage across the appropri-
ate set of Helmholtz coils using either a function generator 
(Stanford Research model DS345), or a lock-in amplifier 
(Stanford Research Systems SR850). This Helmholtz coil 
imposed a magnetic field on the permanent magnet and 
transmitted an axial torque on the specimen. The angular 
displacement of the specimen was measured using laser 
light reflected from a mirror mounted on the magnet to  
a split-diode light detector. The detector signal was  
amplified with a wide-band differential amplifier. Torque 
was inferred from the Helmholtz coil current as follows. 
Calibration experiments were done using the well-
characterized type 6061 Al alloy, which has well known 
moduli. Viscoelastic properties (mechanical losses and 
moduli) of the specimen below resonance were inferred 
from the amplitude and phase measurements from the 
lock-in amplifier and were confirmed via phase measure-
ments upon elliptic Lissajous figures. of torque signal vs. 
angular displacement signal.  Temperature was controlled 
via electrical input to resistance heaters which warmed a 
suitable amount of flowing air directed into the apparatus. 
The air flow subsequently served to heat up the specimen. 
Three identical thermocouples (OMEGA L-0044 K type) 
were used to measure the temperature, the tips of which 
were attached to the surface of the specimen by a thin layer 
of super glue (LOCTITE 409 instant glue), and located 
separately at the top, middle, and base parts of the speci-
men. To minimize the effect of the thermal gradient, two 

methods were applied: (1) wrapping a heating tape (Wat-
low Columbia Inc. Columbia, MO) onto the lateral surface 
of a cylindrical brass tube accommodating BVS coils; (2) 
wrapping a heating cord (Fibrox Inc. Dubuque, IA) onto 
the top of the BVS support rod. The strain amplitude for 
each measurement was about 3 × 10–5. 
 DSC (Power-Compensated Differential Scanning  
Calorimeter 7 Perkin Elmer) thermal analysis tests (with 
rates of 2 °C/min, 5 °C/min, 10 °C/min, 20 °C/min, and 
40 °C/min) were conducted on two samples coming from a 
residual piece which was originally located adjacent to the 
BVS specimen in the large rod. Samples were named in 
sequence as I, II. To eliminate the thickness effect on  
the transition temperature, these two samples were  
finally ground into similar dimensions using sanding  
papers. Dimensions for I and II are 2.59 × 1.68 × 0.7 mm, 
2.64 × 1.67 × 0.66 mm (a × b × t), respectively. a, b, t rep-
resent length, width, and thickness. 
 Reflection optical microscopy observation (Nikon Ec-
lipse 80i light microscope with Nikon DXM1200F digital 
camera, Japan) was performed on a piece from the large 
rod mechanically ground with SiC abrasive papers from 
200 grit down to 1200 grit and finally polished with 1 μm 
commercial diamond paste on a nap cloth. 100 ml of 5% 
HCl with several droplets of 48% HF served as the etchant 
following the method of  Kulcsar [8]. 
 

3 Results 
 3.1 Optical micrograph Optical microscopy obser-
vation disclosed a grain size distribution from 10 µm to 
30 µm. Domain width is less than 2 µm, but is not uniform 
(Fig. 1). Pores exist since the density of this rod is lower 
than the theoretical value 6.02 × 103 kg/m3. 
 
 3.2 BVS temperature scans On consideration of the 
article length, only the 10 Hz BVS temperature scan test 
results are given, as shown in Figs. 2 and 3, which repre-
sent the mechanical losses and the corresponding moduli 
of this polycrystalline BaTiO3 specimen over a range of 
temperature from the ambient to above the Curie point.  
 
 

 

Figure 1 (online colour at: www.pss-b.com) Microstructure of 

polycrystalline BaTiO
3
 by means of reflection optical microscopy 

in polarized light. Etched 2.5 min. 
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Figure 2 (online colour at: www.pss-b.com) Mechanical loss  

and Young’s modulus vs. temperature curves at 10 Hz frequency 

during heating (a) with T ′ = 0.09 °C/s and cooling (b) with  

T ′ = –0.08 °C/s in polycrystalline BaTiO
3
. 

 
 
The rate of temperature change and the thermal gradient  
along the axial direction of the specimen were about 
0.09 °C/s and 2 °C, respectively, for Fig. 2(a), –0.08 °C/s 
and 2.6 °C, respectively, for Fig. 2(b), 0.08 °C/s and 2.5 °C, 
respectively, for Fig. 3(a), and –0.08 °C/s and 1 °C, re-
spectively, for Fig. 3(b). 
 A peak in mechanical loss, i.e., tan δ (δ is the phase 
angle between the stress and strain sinusoids), was ob-
served during each of the BVS temperature scan tests near 
the Curie point 130 °C corresponding to the “tetrago-
nal ↔ cubic” phase transition, which is categorized as a 
first order phase transition (FOPT) [9]. The height of this  

 
 

 

Figure 3 (online colour at: www.pss-b.com) Mechanical loss  

and shear modulus vs. temperature curves at 10 Hz frequency 

during heating (a) with T ′ = 0.08 °C/s and cooling (b) with  

T ′ = –0.08 °C/s in polycrystalline BaTiO
3
. 

 

peak increases with increasing thermal rate and decreasing 
frequency. The peak tends to be higher in cooling than in 
heating given comparable thermal configurations. The 
peak is also higher in bending than in torsion. The peak 
width has the tendency to broaden as thermal rate is in-
creased but becomes slightly narrower with increasing fre-
quency. Peak width is also slightly broader in cooling than 
in heating given comparable thermal and mechanical con-
figurations. The observed dependence of the magnitude of 
tan δ at Tp (peak temperature) with thermal rate and fre-
quency present the commonly known characteristics of the 
mechanical loss during a FOPT [10]. 
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 The expressions for 
p

(tan ) ,
T

δ  from 10 Hz to 50 Hz in 
both bending and torsion vibrations, have been derived as 
follows: 
 – in bending: 

p

0.28 0.54 0.74(tan ) = 0.964( ) /(2π ) + 0.000133(2π )
T

T f fδ ¢   

 + 0.55 × 0.027 e0.012ƒ + 0.45 × 0.0082 e0.027ƒ ,  

  (1) 

(10 Hz ≤ ƒ ≤ 50 Hz, given natural frequency of 590 Hz); 
 – in torsion: 

p

0.24 0.54 0.7(tan ) = 0.69( ) /(2π ) + 0.00011(2π )
T

T f fδ ¢

 

 +0.55 × 0.026 e0.005ƒ + 0.45 × 0.004 e0.015ƒ ,  

  (2) 

(10 Hz ≤ ƒ ≤ 50 Hz, given natural frequency of 5959 Hz), 
in which T ′ and ƒ represent thermal rate and frequency, re-
spectively. Owing to curve fitting methods, the last two 
terms in expressions (1) and (2) are claimed to be valid  
only within the frequency range specified. The specific 
procedure and relevant discussion for the derivation of 
these two expressions are provided in Section 4.1.1. 
 Anomalous behaviors were observed in some of the 
tests within certain temperature regions other than in the 
vicinity of the transformation. Such behaviors were repre-
sented as the anomalous responses in mechanical losses 
and the corresponding moduli within those temperature re-
gions (e.g. temperature region between 90 °C and 110 °C 
in Fig. 2(a)). Such type of anomalous responses was also 
observed above the Curie point in some tests (Fig. 4 is an  
 

 

Figure 4 (online colour at: www.pss-b.com) An example exhib-

its the anomalous mechanical responses in polycrystalline BaTiO
3
 

above the Curie point. Test was performed at 10 Hz frequency in 

torsion vibration while the temperature was raised. The normal 

response at Tc to the phase transition was labeled to discriminate 

it from the anomalous responses. 

example, which was a heating test at 10 Hz frequency in 
torsion vibration. The rate of temperature change was 
about 0.09 °C/s). These anomalies were neither attributed 
to the thermal gradient which was small (<3 °C), nor at-
tributed to the experimental setup. Tests on a series of ma-
terials (including pure tin and alumina), which do not ex-
perience any transformation within the temperature and 
frequency regions concerned, with identical experimental 
configurations as for this BaTiO3 ceramic specimen, have 
shown nothing anomalous. 
 
 3.3 DSC thermal analysis DSC results are shown in 
Fig. 5. Served as a comparison, the transition temperatures 
measured by means of BVS are provided inside the plot. 
The transition temperatures were taken by determining the 
starting temperatures of the peaks on the DSC curves and 
the mechanical loss curves. The transition temperature 
shifts as thermal rate is varied. The transition temperature 
in heating never converges to that in cooling however slow 
the thermal rate is achieved, even approaching zero. This 
phenomenon is called thermal hysteresis [11], a character-
istic of first order phase transition. We infer the gap be-
tween the transition temperatures in a heating and a cool-
ing process as the thermal rate is exponentially extrapo-
lated to zero (a curve fitting in Fig. 5). This gap, which can 
be regarded as the thermal hysteresis region, was then 
found to be approximately 1.3 °C. The transition tempera-
ture is thus a small temperature region rather than one par-
ticular temperature point. 
 The transition temperature is lower in mechanical tests 
than that in thermal tests. Exponential extrapolation (curve  
 

 

Figure 5 (online colour at: www.pss-b.com) Comparison of the 

transition temperatures, corresponding to the “tetragonal–cubic” 

phase transition in polycrystalline BaTiO
3
, measured by DSC and 

via BVS. The transition temperatures were taken by determining 

the starting temperatures of the peaks on the DSC curves (DSC 

test) and the mechanical loss curves (BVS tests). 
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fitting in Fig. 5) was applied again to estimate the hystere-
sis region given thermo-mechanical coupling, which was 
found to be approximately 1.2 °C. 
 
 3.4 BVS isothermal frequency scans Isothermal 
frequency scans were conducted on this polycrystalline 
BaTiO3 specimen from 10–3 Hz to approaching natural fre-
quencies (590 Hz for bending and 5959 Hz for torsion), as 
shown in Figs. 6 and 7. For all the scans, the thermal gra-
dient along the axial direction of the specimen and the 
thermal fluctuation of the hot air were less than 1.6 °C and 
1 °C, respectively. 
 A hump on the mechanical loss curve below 1 Hz was 
observed within the transition temperature region. Away 
from the transition temperature, the loss tangent was more 
flat vs. frequency. 
 Young’s modulus was found to have softened by a fac-
tor of ranging between 1.15 and 1.32 as frequency was re-
duced from 590 Hz to 10–3 Hz. A dip in Young’s modulus 
was presented as E124.6 °C > E126.5 °C < E128.5 °C, and there was 
approximately 15 GPa reduction from E124.6 °C (also E128.5 °C) 
to E126.5 °C. In the case of torsion, shear modulus was also 
observed to have softened by a factor of ranging from 1.13 
to 1.23 as frequency was reduced from 3000 Hz to 10–3 Hz. 
The shear modulus, in contrast to Young’s modulus, did 
not exhibit a relative minimum vs. temperature. Transfor-
mation process was found to be a function of time as a no-
table increment in moduli was often observed after a suffi-
ciently long isothermal period in the vicinity of the phase 
transition. Observations have also shown that several hours 
of isothermal condition near the transition temperature en-
ables the transformation to be completed. The measured 
moduli within this temperature region thus depended on 
the time under constant temperature. 
 
 

 

Figure 6 (online colour at: www.pss-b.com) Mechanical loss and 

Young’s modulus vs. frequency curves of polycrystalline BaTiO
3
 

in isothermal frequency scans. 

 

Figure 7 (online colour at: www.pss-b.com) Mechanical loss and 

shear modulus vs. frequency curves of polycrystalline BaTiO
3
 in 

isothermal frequency scans. 
 
 3.5 BVS quasi-isothermal test Isothermal tests 
were conducted with the aims of isolating the effect of 
temperature from the effect of rate of temperature change, 
and of reducing temperature gradients along the specimen. 
Such tests take a long time (more than 1 hour). It is a 
painstaking task to maintain a constant temperature within 
narrow tolerance for such a long period. Moreover, varying 
frequency may disturb the process of the phase transition 
even under isothermal conditions, and thus blur the 
modulus defect. Furthermore, as shown in Fig. 5, the tran-
sition temperature in bending does not coincide exactly 
with that in torsion even at an identical thermal rate. There-
fore, it is not that reasonable to calculate Poisson’s ratio 
and bulk modulus based upon separate bending and torsion 
tests even though the thermal rate is well controlled to be 
identical. To avoid these problems, and to minimize the 
thermal gradient, shear modulus and Young’s modulus 
were also measured quasi-isothermally (0.004 °C/s) at 
10 Hz (far below natural frequencies) from 25 °C to 
140 °C. At each temperature point, |G*| was measured 
prior to |E*| (Fig. 8). The thermal gradient along the 
specimen axial direction was less than 0.5 °C. 
 Polycrystalline BaTiO3 is isotropic in nature due to the 
random orientation of the grains, therefore, the bulk modu-
lus and Poisson’s ratio can be calculated based upon the 
results (as shown in Fig. 8) by applying formulas (3) and 
(4) which are applicable to isotropic materials: 

,

9 3

E
K

E

G

=

-

 (3) 

and 

1,
2

E

G
ν = -  (4) 
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Figure 8 (online colour at: www.pss-b.com) Young’s modulus 

and shear modulus vs. temperature of polycrystalline BaTiO
3
 at 

10 Hz frequency with a thermal rate of approximately 0.004 °C/s. 

 
 

in which K, E, G, and ν represent bulk modulus, Young’s 
modulus, shear modulus, and Poisson’s ratio, respectively 
(Fig. 9). Significant softening in bulk modulus (almost a 
factor of four) and reduction in Poisson’s ratio (from 0.35 
to a transient negative value –0.02) were disclosed during 
the phase transition. Slight softening in bulk modulus was 
also presented between 60 °C and 100 °C, corresponding 
to the anomalous mechanical responses as mentioned in 
the former part. 
 
 

 

Figure 9 (online colour at: www.pss-b.com) Poisson’s ratio and 

bulk modulus vs. temperature curves of polycrystalline BaTiO
3
 at 

10 Hz frequency, obtained from Fig. 8 by applying formulas (3) 

and (4). 

4 Analysis and discussion 
4.1 BVS temperature scans 

 4.1.1 Expressions for mechanical loss at the 
peak temperature Zhang et al. [10] explained FOPT 
from the perspective of the phase interface movement, and 
provided an expression for tan δ during the FOPT as: 

tan δ = A(T) (T ′)g/(2πƒ)g+2h + B(T) (2πƒ)1–2h , (5) 

in which A(T) and B(T) represent the mechanical loss of 
moving phase interface and the mechanical loss (independ-
ent of thermal rate) with static phase interface, i.e., the 
contribution from softening of phonon modes [10, 12], re-
spectively. T ′ is of change in temperature; g and h are two 
parameters with 0 < g, h < 1. g determines the dynamics of 
phase interface and the energy dissipation rate of FOPT 
[13], h is determined for the specific phase transition. ƒ is 
frequency. Zhang et al. have applied this theory to explain 
many FOPT systems [10, 12], including BaTiO3 ceramic 
[13] as it undergoes the two ferroelectric phase transitions 
below the Curie point. However, this model needs some 
revision since it only take into account the total free energy 
that drives the phase interface to move and the softening of 
phonon modes as the preconditions for the mechanical loss 
derivation during the FOPT, but has not considered the in-
trinsic damping of the system which does not originate 
from the mentioned free energy and the phonon modes sof-
tening. The intrinsic damping reflects how the nature of a 
specific phase of the real material deviates from ideal elas-
ticity, and depends only on the microstructure of that spe-
cific phase [4]. 
 Another well known model for tanδ during the marten-
sitic transformation (a type of FOPT) is expressed as a sum 
of three contributions [4]: 

tan δ = tan δtransient + tan δPT + tan δintrinsic . (6) 

The magnitude of the transient term tan δtransient increases 
with increasing thermal rate and descending frequency. 
The second term tan δPT comes from the phase transition it-
self, and still exists even when the thermal rate is reduced 
to zero. The third term tan δintrinsic is the intrinsic damping 
of the parent and new phases that coexist during the phase 
transition. Although this model is proposed specifically for 
the martensitic transformation, it does reveal the nature of 
the mechanical loss during a FOPT in terms of all possible 
contributions. 
 By comparison of expressions (5) and (6) and the defi-
nition of each term, the following relations are suggested: 

tan δtransient = A(T) (T ′)g/(2πƒ)g+2h , (7) 

tan δPT = B(T) (2πƒ)1–2h . (8) 

As a result, tan δ in (5) corresponds to (tan δtotal –tan δintrinsic). 
tan δintrinsic of the system, which is found to be a weak func-
tion of thermal rate, is the weighted average of tan δintrinsic 
of both the parent and the new phases. Figure 10 describes 
how to determine tan δintrinsic of the system at temperature T 
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during the phase transition [4]. If one adds this intrinsic 
damping term into expression (5), we can obtain the ex-
pression for the total mechanical loss during the phase 
transition at the Curie point for this polycrystalline BaTiO3 
specimen: 

tan δ = A(T) (T ′)g/(2πƒ)g+2h + B(T) (2πf)1–2h 

 + a(T) · tan δintrinsicP(ƒ, Ts)   

 + (1 – a(T)) · tan δintrinsicN(ƒ, Tf) , (9) 

in which a(T) is the volume fraction of the parent phase 
remained in the system at temperature T during the phase 
transition, with a(Ts) = 1 and a(Tf) = 0. At Tp, the volume 
fraction of the parent phase remained in the system a(Tp) is 
about 55% [12]. tan δintrinsicP(ƒ, Ts) and tan δintrinsicN(ƒ, Tf) are 
the intrinsic damping of the parent phase and the new 
phase at Ts and Tf of the transition, respectively, and are 
frequency dependent. 
 Peak values were used to derive the 

p

tan
T

δ  expressions. 
First ln (tan δ/(∆M/M)) was plotted against ln (2πƒ), and  
–h was determined as the slope of the curve [13] 
(Fig. 11(a); ∆M/M refers to the modulus defect). Plot 
tan δ/(2πƒ)1–2h against (T ′)g/(2πƒ)1+g, subsequently, and g  
 

 

Figure 10 (online colour at: www.pss-b.com) A mechanical loss 

peak during the “tetragonal → cubic” phase transition in poly-

crystalline BaTiO
3
. Measurement was performed at 10 Hz fre-

quency in torsion vibration with approximately +0.07 °C/s ther-

mal rate. Define tan δ at Ts (starting temperature) and T
f
 (finishing 

temperature) of the phase transition as the intrinsic dampings of 

the parent and the new phases. At a specific temperature T during 

the transition, intrinsic damping tan δ
intrinsic

 (i.e., baseline) is ex-

pressed as [4] tan δ
intrinsic

 = a · tan δ
intrinsicP

 + (1 – a) · tan δ
intrinsicN

, in 

which a is the volume fraction of the parent phase remained in 

the system at temperature T. tan δ
intrinsicP

 and tan δ
intrinsicN

 are intrin-

sic dampings of the parent and the new phases at T, respectively. 

(1 – a) can be obtained by referring to the ratio of the areas of 

two triangles as A
∆ECD/ A

∆ACB [12]. 

was defined as the value that gives the minimum root-
mean-square error of the data points with respect to the 
least-squares fitting curve of this graph (i.e., linear curve 
fitting), the corresponding slope and intercept of this gen-
erated curve are A(Tp) and B(Tp), respectively [13] 
(Fig. 11(b)). Intrinsic dampings of the parent and new 
phases at Ts and Tf were found in approximation to expo-
nentially increase with ascending frequency (10 Hz to 
50 Hz) in the vicinity of the phase transition (Fig. 11(c) 
and (d)). Outside this frequency range, the relationship be-
tween the frequency and intrinsic damping may not be 
monotonic. Expressions for tan δ can be readily obtained at 
this time as (1) and (2). 
 
 4.1.2 Anomalous responses in mechanical 
losses and moduli The mechanical anomalies (as indi-
cated in Section 3.2) may be associated with the con-
strained negative stiffness of certain grains or domain ag-
gregates. The effect of constraint on negative stiffness 
elements by adjacent structures is considered here in the 
light of the following observations on indium-thallium al-
loy (InTl) [14]. In polycrystalline InTl, negative-stiffness 
elements constraint effects were inferred based on the fact 
that the mechanical loss in the polycrystalline material ex-
ceeded that for single crystals of similar alloy. The high 
temperature portion of the mechanical loss peak in InTl 
occurs before any transgranular martensitic band was ob-
served, therefore, this portion cannot be due to the interfa-
cial motion. Constrained negative stiffness of the grains 
with local fine scale pre-martensitic bands can account for 
this mechanical loss. In polycrystalline BaTiO3, a grain 
with multiple domains inside can be modeled as a system 
composed of a series of springs [15], and each domain 
serves as one spring. Negative stiffness is allowed for such 
a system if these springs are arranged in suitable configura-
tions with sufficient constraint applied. Such an effect can 
also be realized in an aggregate of only a few domains. 
When torque is applied, each grain and domain inside the 
specimen cannot deform freely but in a way that conforms 
to the compatibility conditions for the grain and domain 
boundaries. Stored elastic energy is thus introduced. These 
anomalous responses may be attributed to the absorption or 
dissipation of the elastic energy between some constrained 
negative stiffness grains (with suitable multi-domain struc-
ture inside) or domain aggregates (with proper arrange-
ments) and their surroundings under suitable conditions. 
The distribution of oxygen vacancies [6], preferably lo-
cated at the grain and domain boundaries, may be one of 
the factors that determine these conditions, since it con-
tributes to the compatibilities of the mechanical constraint 
boundaries. But could the anomalies observed above the 
Curie point be also associated with the constrained nega-
tive stiffness of grains or domain aggregates? Zhang et al. 

[16] have shown, by means of quantum mechanics, that the 
cubic phase in BaTiO3 ceramic is also antiferroelectric, i.e., 
domain structure still exists above the Curie point. The 
present observation of the mechanical anomalies above the  
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Figure 11 (online colour at: www.pss-b.com) (a) ln (tan δ/∆M/M) vs. ln (2πƒ) curves during the “tetragonal → cubic” phase transition 

in polycrystalline BaTiO
3
 in both bending and torsion vibrations. (b) tan δ/(2πƒ)1–2h vs. (T ′)g/(2πf)1+g curves during the “tetrago-

nal → cubic” phase transition in both bending and torsion vibrations. (c) and (d) refer to the intrinsic dampings of the parent phase 

(tetragonal) and the new phase (cubic) at T
s
 and T

f 
 of the “tetragonal → cubic” phase transition vs. frequency (from 10 Hz to 50 Hz) in 

both bending and torsion vibrations, respectively. 

 
 
Curie point is in agreement with Zhang et al.’s conclusion, 
provided that such anomalies were indeed attributed to the 
effect of constrained negative stiffness. 
 Jaglinski et al. [3] have observed mechanical anoma-
lies in the BaTiO3–Sn composite materials within a narrow 
range of temperature far away from 130 °C, which  
corresponds to the “tetragonal ↔ cubic” phase transition  
of BaTiO3, but much higher than its “orthorhom-
bic ↔ tetragonal” phase transformation temperature 
around 10 °C. The size of the polycrystalline BaTiO3 parti-
cle inclusions has a distribution between 15 µm and 
210 µm (Fig. 2 of Ref. [3]), in which scale the Curie point 
is supposed to be around 130 °C [17]. If there were some 
inclusions (which would not be visible in the original mi-
crograph) with grain size of less than 1 μm, the Curie point 
may be substantially reduced due to the enhanced surface 
energy. The observed temperature-shifted anomalies may 

be attributed to the “tetragonal ↔ cubic” phase transition 
of these tiny inclusions. Nevertheless, it is a possibility that 
the anomalies observed by Jaglinski et al. are linked to the 
anomalous behaviors as observed in this study of a poly-
crystalline BaTiO3 specimen. Its bulk modulus at the tem-
perature regions at which the mechanical anomalies were 
observed is unknown since |E*| and |G*| were measured in 
separate tests. If a sufficient softening in bulk modulus in-
deed occurred at these temperature regions, extreme me-
chanical properties are allowed by composite theory. Fig-
ure 9 does present a softening in bulk modulus between 
60 °C and 100 °C though the measured |E*| and |G*| did 
not show apparent anomalies at that temperature region 
(Fig. 8). 
 
 4.2 Transition temperature (DSC vs. BVS) As for 
the divergence in the transition temperature between ther-
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mal-induced and thermo-mechanical-induced transforma-
tions, it may be attributed to the internal stress. Ishidate et 
al. [18] have established a temperature-pressure phase dia-
gram for polycrystalline BaTiO3 by means of dielectric 
measurements. They have shown that the Curie point line-
arly decreases with increasing pressure up to 3 GPa, and 
the slope is approximately –55 °C/GPa. The rotation of 
grains and domains under dynamic loading introduces ac-
cumulating internal stress that preferably locates at the 
grain and domain boundaries. Such internal stress will ex-
ert pressure and thus lower the Curie point. As the level of 
the accumulated internal stress varies with different ther-
mal and mechanical histories, the transition temperature in 
mechanical test could thus vary within a certain range. 
However, this stress-induced mechanism for the transition 
temperature shift is unlikely to account for the temperature 
regions (far away from 130 °C) at which the mechanical 
anomalies were observed in the BaTiO3–Sn composite, as 
tin will yield at only 50 MPa, and that only correspond to 
less than one degree shift in the Curie point. 
 
 4.3 Moduli as a function of time in the vicinity 
of the phase transition in an isothermal condition 

As mentioned in Section 3.4, transformation can be gradu-
ally completed as time forwards at a constant temperature 
in the vicinity of the phase transition. First order phase 
transition is a process of nucleation and growth of the new 
phase from the parent phase [19], such a process is time 
dependent given an isothermal condition, i.e., the fraction 
of the new phase increases with time proportionally until 
the system is completely depleted of the parent phase. Be-
sides, dynamic loading will accumulate internal stress. 
This internal stress reduces the transition temperature, and 
thus assists the progression of the transformation. 
 
 4.4 Modulus defect and lowering of Poisson’s 
ratio during phase transformation in a quasi-
isothermal condition As shown in Fig. 9, the bulk 
modulus exhibits a large softening of about a factor of four 
in the vicinity of the Curie point. However the softening 
does not proceed to zero. If the isotropic ceramic were to 
approach a negative bulk modulus (observable only under 
constraint) both the Young’s modulus and the bulk 
modulus would soften to zero in an un-constrained sample, 
and the shear modulus would not soften significantly. Sof-
tening in the modulus will occur over a narrow range of 
temperature and composition, therefore good homogeneity 
of both temperature and composition is needed to observe 
the softening with fidelity. This is unlike the case of the 
composite for which only a dilute concentration of nega-
tive-stiffness inclusions is sufficient to obtain substantial 
effects [2]. Therefore, the extreme stiffness observed in the 
BaTiO3-Sn composite does not necessarily require the par-
ticipation of all the inclusions, and the thermal gradient in 
the composites is consequently a minor issue. Nonetheless, 
for this polycrystalline BaTiO3 specimen, a significant sof-
tening in Young’s modulus to zero was not observed. Lack 

of softening was not due to the thermal gradient for the fol-
lowing reasons. The thermal gradient in the cross-section 
of the specimen can be inferred by applying formula (10) 
[20]: 

2 2

P
1 1

,
4 4

d C d
t

D k

ρ
= ◊ = ◊  (10) 

in which t, d, D, k, Cp and ρ represent thermal diffusivity 
time constant, depth of penetration of heat in time t, ther-
mal diffusivity, thermal conductivity, heat capacity  
and mass density, respectively. Given thermal conductivity 
of 4.7 W/(m K) [21], heat capacity of approximately 
0.0006 J/(K kg) [9] when the “tetragonal ↔ cubic” trans-
formation is undergoing, as well as mass density of 
5.43 × 103 kg/m3 for this specimen, thermal diffusion was 
found to be about 1.5 mm2 s–1. For a cross section of 
2.447 × 2.78 mm, heat transfer could thus be completed 
within 0.4 s. As when the thermal rate is reduced to 
0.004 °C/s, thermal gradient in the cross section can be ne-
glected. Further effort led to the reduction of thermal gra-
dient to within 0.1 °C (with thermal rate of approximately 
0.003 °C/s), but further softening in Young’s modulus was 
not observed (Fig. 12). 

 Polycrystalline bulk material inevitably has local struc-
tural and compositional inhomogeneities. Furthermore, 
bulk material contains pores and microcracks, which oper-
ate as stress concentrators. These factors lead to the non-
uniformity in the transition temperature for different parts 
of the specimen. Additionally, internal strain would induce 
variation in the transition temperature by referring to the 
Landau’s theory of phase transition [22]. Total free energy 
is then the sum of the bulk Landau free energy and the 
elastic energy [23]. Elastic energy induced by a torsion  
 

 

Figure 12 (online colour at: www.pss-b.com) Comparison of 

Young’s modulus of polycrystalline BaTiO
3
 in the vicinity of the 

phase transition near the Curie point as the thermal gradient was 

reduced from 0.5 °C to 0.1 °C. Similar thermal rates (0.003–

0.004 °C/s) were applied for both measurements. 
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torque is different from that by a bending torque. However, 
such a difference in elastic energy could disturb the pro-
cess of the phase transition even isothermally, thus influ-
ence the measured |E*| and |G*|. Slow thermal rate could 
be another reason. Modulus defect during the FOPT origi-
nates from the moving interface and the softening of pho-
non modes [10]. Though the contribution to modulus de-
fect from the phonon modes softening is independent of 
the thermal rate [24], phase interface velocity will decrease 
as the thermal rate is reduced [10]. As a result, the modulus 
defect may not be as prominent as when a high thermal 
rate is applied. 
 Softening in elastic constants was reported in several 
types of single crystal ceramics [25–27] when they un-
dergo phase transitions while electrically short-circuited. 
As for the BaTiO3–Sn composite material, a portion of 
particles are able to exist in the form of single crystals. 
Also, these particles are surrounded by metallic matrix, 
and the electric boundary condition of uniform potential is 
thus available. For BaTiO3 single crystal, bulk moduli in 
the tetragonal phase (possesses transversely isotropic 
symmetry) and the cubic phase (possesses isotropic sym-
metry) are expressed in terms of elastic constants as formu-
las (11) and (12) [28]: 

2

33 11 12 13
Tetragonal

33 11 12 13 Tetragonal

( ) 2

2 4

C C C C
K

C C C C

+ -Ê ˆ= Á ˜Ë ¯+ + -
 (11) 

and 

11 12

Cubic

Cubic

2

3

C C
K

+Ê ˆ= Ë ¯  (12) 

and when the phase transition takes place,  conver-
gence of elastic constants is expressed as [(C33)Tetragonal 
≠ (C11)Tetragonal] → (C11)Cubic and [(C13)Tetragonal ≠ (C12)Tetragonal] 
→ (C12)Cubic. In contrast, polycrystalline BaTiO3 possesses 
isotropic symmetry in a statistical sense although anisot-
ropic microscopically. As a result, bulk moduli are ex-
pressed as (13) and (14): 

11 12
Tetragonal

Tetragonal

2

3

C C
K

· Ò + · ÒÊ ˆ= Ë ¯  (13) 

and 

11 12

Cubic

Cubic

2
.

3

C C
K

· Ò + · ÒÊ ˆ= Á ˜Ë ¯
 (14) 

In Eq. (13), 〈C11〉Tetragonal, 〈C12〉Tetragonal are functions of 
(Cij)Tetragonal of the single crystal, the expressions of which 
are very complex, and there is no unique relationship be-
tween the bulk modulus of single crystal and that of poly-
crystalline [29]. However, in Eq. (14), the isotropy condi-
tion 〈C44〉Cubic = 1/2(〈C11〉Cubic – 〈C12〉Cubic) is satisfied after 
averaging, and the single crystal and polycrystalline bulk 
moduli are equal [30]. Furthermore, if the effects from the 
structural and compositional inhomogeneities as well as 
the existence of defects are taken into account, the expres-

sions for the bulk moduli of the polycrystalline  
BaTiO3 would be more complicated. 
 With sufficient constraint from the surrounding matrix 
[3], negative bulk modulus of the inclusions can be re-
strained for a certain time interval and thus be revealed, 
which is the not the case as for this polycrystalline BaTiO3 
specimen as when it undergoes the corresponding phase 
transition. Nevertheless, if sufficient constraint is available, 
negative Young’s modulus may be able to be stabilized. 
 Figure 9 also presents a transient lowering in Poisson’s 
ratio to a slightly negative value in the vicinity of the phase 
transformation. Negative Poisson’s ratio behavior has been 
earlier observed experimentally in polymer gels [31, 32] 
near the volume phase transition, and studied by computer 
simulations [33] in several single-disperse and poly-
disperse hard disc systems. Negative Poisson’s ratio also 
occurs in designed foams, via unfolding of the cells [34]. 
Poisson’s ratio is an indicator of mechanical stability of 
isotropic solids [33], and it is very interesting to observe a 
negative Poisson’s ratio in a stiff polycrystalline material 
in the vicinity of phase transformation. When the Poisson’s 
ratio becomes negative and approaches –1, the bulk 
modulus will become less than the shear modulus and 
gradually approaches zero [15, 35]. Simulations [33] have 
predicted that a more homogeneous grain size distribution 
and a lower degree of defect concentration will help to 
lower the Poisson’s ratio of the system in the vicinity of 
mechanical instability. 
 
 5 Conclusion Polycrystalline BaTiO3 was studied in 
torsion and bending over a range of temperature and fre-
quency. A peak in mechanical loss has been observed at 
the Curie point. The height and width of the peak increase 
with thermal rate and the inverse of frequency, in harmony 
with theory. Anomalous responses in mechanical losses 
and moduli were observed in some temperature scans  
outside the transition temperature regions. Damping 
maxima were observed at low frequency in isothermal 
studies near the Curie point. Thermal hysteresis during the 
transformation, whether measured via scanning calo-
rimetry or via mechanical spectroscopy, was found to be 
approximately 1.3 °C. Bulk modulus softened by about a 
factor of four near the Curie point, and Poisson’s ratio at-
tained a slightly negative value. The softening may have 
been broadened by compositional and structural heteroge-
neities. 
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