Elastic anisotropy of bone Biomechanics, BME 315

Tensorial elastic moduli (GPa), determined ultrasonically

	Fresh bovine phalanx (2.2.9)	Dry human femur (2.2.10)			
C ₁₁₁₁	19.7	23.4			
C ₁₁₂₂	12.1	9.06			
C ₁₁₃₃	12.6	9.11			
C ₃₃₃₃	32.0	32.5			
C ₂₃₂₃	5.4	8.71			

Elastic anisotropy of bone. **Technical** elastic moduli. Wet human femoral bone by mechanical testing (2.2.2) and bovine femoral bone by ultrasound (2.2.11).

Young's moduli (GPa)		Shear moduli(GPa)		Poisson's ratios			
						(dimensionless)	
	Human	Bovine	Huma	an Bovine	Human	Bovine	
Elong	17	22	G _{long} 3.	6 5.3	0.58	0.30	
Etransv	11.5	15	G _{tr} 3.	3 6.3	0.31	0.11	
Etransv	11.5	12	G _{tr} 3.3	3 7.0	0.31	0.21	

The stiffness of compact bone tissue depends on the bone from which it is taken. Fibular bone has a Young's modulus about 18% greater, and tibial bone about 7% greater, than that of femoral bone. The differences are associated with differences in the histology of the bone tissue. Bone is elastically anisotropic, i.e. its properties depend on direction. Such behavior is unlike that of steel, aluminum and most plastics, but is similar to that of wood.

Strength	Density	
ult[MPa]	(g/cm^3)	ult _/
20-40	0.95	21-42
70	1.18	59.3
148	2.0	74 .
49		
400	7.8	51.3
110	2.71	40.6
20	2.77	7.2
28	2.32	12.1
	ult [MPa] 20-40 70 148 49 400 110 20 28	StrengthDensity $ult_{[MPa]}$ (g/cm^3) 20-400.95701.181482.0494007.81102.71202.77282.32

	modulus	Density		
Material	E[GPa]	(g/cm^3)	<u>E/</u>	<u> </u>
polyethylene (high density)	0.5	0.95	0.53	0.55
polymethyl methacrylate [PMMA]	3.0	1.18	2.5	2.15
human compact bone				
longitudinal	17	1.8	9.4	5.2
Dentin	13-18			
Enamel	50-84			
steel(structural)	200	7.86	25.4	3.23
aluminum	70	2.71	25.8	9.53
concrete	25	2.32	10.8	4.6
wood(pine)	11	0.61	18.0	29.6

References

2.2.2 Reilly, D.T. and Burstein, A. H., The elastic and ultimate properties of compact bone tissue, <u>J. Biomechanics</u>, 8, 393-405, 1975.

2.2.9 Lang, S.B., Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bones, <u>IEEE Trans. Biomed. Eng.</u>, BME-17, 101-105, 1970.

2.2.10 Yoon, H.S. and Katz, J. L., Ultrasonic wave propagation in human cortical bone. II Measurements of elastic properties and microhardness, J. Biomechanics, 9, 459-464, 1976.

2.2.11 Van Buskirk, W. C. and Ashman, R. B., The elastic moduli of bone, in *Mechanical Properties of Bone*, Joint ASME-ASCE Applied Mechanics, Fluids Engineering and Bioengineering Conference, Boulder, CO, 1981.