
Biomechanics BME 315
Notes on waves

 Consider the following simple one dimensional problem of waves in a thin rod of linearly viscoelastic material.
Waves  are transmitted down a long uniform rod of length L, cross sectional area A, and density ρ. The dynamic modulus
for a viscoelastic material is complex: E* ≡ E' + i E'' = E'(1 + i tan δ), with δ as the phase angle between stress and strain.
Physically, δ , called the 'loss angle', is a measure of energy dissipation in the material.  In a one dimensional analysis
neglect of Poisson effects is warrantable if the wavelength of stress waves in the rod is much greater than the rod diameter.
That is usually not the case for ultrasonic tests. The stress strain relation is taken as

σ = E*ε = E* ∂u
∂z (3.7.1)

in which z is a coordinate along the rod axis and u is a displacement in that direction. Consider now a differential element of
length dz along the rod. Applying Newton's second law,

ρAdz ∂
2u
∂t2  = Aσ(z+dz,t) - Aσ(z,t) (3.7.2)

Dividing by dz,

ρA ∂
2u
∂t2   = ∂Aσ

∂z  (3.7.3)

Incorporating the stress strain relation,
∂2u
∂t2  = E*

ρ
 ∂

2u
∂z2   (3.7.4)

This is a wave equation. Consider a trial solution of the following form and substitute it. If you prefer, sin(kx - ω t).
u(z,t) = u0

 ei(kz-ωt), (3.7.5)

ω 2u0 = k2u0
E*
ρ

(3.7.6)

k E'
ρ

(1 + i tanδ)  = ω , (3.7.7)

k E'
ρ

 1 + i  tanδ  = ω . (3.7.8)

Suppose the loss δ is small. Expand the second square root and retain the lowest order terms. Moreover, define

c =  E'
ρ

 (3.7.9)

k ≈ ωc (1 + 12 i tan δ) (3.7.10)

Then Eq. 3.7.3 has a solution,

u(z,t) = u0exp{iω (zc  - t)} exp{-zω2c tan δ}. (3.7.11)

In the first complex exponential, the argument {z/c - t} is constant if dz/c = dt, or dz/dt = c. So, the wave speed c is
interpreted as the phase velocity  of the wave. As time t increases, z must increase to keep the phase argument constant, so
the wave moves to the right (direction of increasing z). A left moving wave would be written u(z,t) = u0exp iω{z/c + t}.

As for the interpretation of k (as a real number, for zero loss δ), observe that a sinusoid goes through a complete cycle
when its argument goes through 2π. So kz =2π corresponds to one spatial cycle in z, or one wavelength, given the name λ.
So k = 2π/λ. Similarly, at a given point in space, one cycle occurs when ω t = 2π. The time for one cycle is called the
period  T of the wave, and the inverse of the period is the number of cycles per unit time, the frequency  ν  = 1/T. So ω  =
2πν.

The second exponential in Eq. 3.7.11 is a real exponential, and signifies a decrease of wave amplitude with distance z.
This decrease is known as attenuation. The attenuation coefficient (per unit length) is defined for small loss as

α ≈ ω2c tan δ. (3.7.12)

α, the attenuation per unit length, is commonly given in units of nepers per length, in which 'neper' is dimensionless. One
neper is a decrease in amplitude of a factor of 1/e. This corresponds to αz = 1 in Eq. 3.7.11 with the second term taken as
e-αz. The word 'neper' is a degradation of the name of the inventor of the natural logarithm, Napier. The attenuation can also
be expressed in decibels (dB) per unit length by the following. 20 log10(eα) = 8.686 α, so α (dB/cm) = 8.68 α (neper/cm).

If the rod is elastic (δ = 0), the stress waves propagate without dispersion, that is, the wave speed is independent of
frequency, provided the one dimensional assumption is justified by the wavelength being much larger than the rod diameter.
Moreover the waves propagate without attenuation. If the rod is viscoelastic, wave speed depends on frequency since E'
depends on frequency, and there is attenuation.
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