
BME  315  Biomechanics
Experiment 6. Ultrasonic properties of bone tissue

§1    Preliminaries.
§1.1  Waves and Transducers
Stress waves from 20 Hz to 20 kHz are perceived as sound. Waves above 20 kHz are referred to as ultrasonic; ultrasonic

frequencies between 1 MHz and 10 MHz are commonly used in the nondestructive evaluation of engineering materials, for
materials characterization, and for diagnostic ultrasound in medicine. High frequency impulse waves are also used in lithotripsy
to shatter kidney stones without surgery. The ultrasonic transducers used in this laboratory are intended for non-destructive
testing (NDT). They contain piezoelectric ceramic discs; they exhibit strong coupling between the electrical and acoustic signal.
Each transducer has a natural frequency which is marked on it. They are heavily damped to achieve broadband response off the
natural frequency. The basic transducers emit and receive longitudinal waves. They can be used to find the depth of a flaw but do
not provide images.

§1.2  Anisotropy
Biological materials such as bone, wood, and muscle are anisotropic, that is, their properties depend on direction.

Hooke's law in one dimension may be written σ = Eε, with E as Young's modulus. In three dimensions, allowing anisotropy,
Hooke's law appears as follows. You will not need to manipulate these for the lab!
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Sijklσkl (compliance formulation)

There are 81 components of the elastic modulus tensor Cijkl, but taking into account the symmetry of the stress and
strain tensors, only 36 of them are independent. If the elastic solid is describable by a strain energy function, the number of
independent elastic constants is reduced to 21. An elastic modulus tensor with 21 independent constants describes an anisotropic
material with the most general type of anisotropy, triclinic symmetry. Materials with orthotropic symmetry are invariant to
reflections in two orthogonal planes and are describable by nine elastic constants. Materials with axisymmetry, also called
transverse isotropy or hexagonal symmetry, are invariant to 60° rotations about an axis and are describable by five independent
elastic constants. Materials with cubic symmetry are describable by three elastic constants. Isotropic materials, with properties
independent of direction are describable by two independent  elastic constants. They may be taken as Young's modulus E and
Poisson's ratio ν.  For an isotropic material, E and ν are the same regardless of direction. For an orthotropic material, there are
three values of E, three values of G, one for each coordinate direction. For an axisymmetric material, the transverse direction
differs from the longitudinal direction, but the Young's moduli for two transverse directions are identical.
§2    Ultrasonic waves and material properties.

§2.1  Velocity
Ultrasonic wave speed v depends on the stiffness and on the density ρ of the material under study. For longitudinal waves,

v = E/ρ with E as Young's modulus. This is valid for a long rod of length much longer than the wavelength, and width much
less than the wavelength. It is not valid for the present experiment, since the wavelength is so short. If the width is much larger
than the wavelength, wave speed is governed by the tensorial modulus. In the 1 or x direction, it is C1111: v = C1111/ρ. In the

3 or z direction it is C3333. For isotropic  materials, C1111 = C2222 = C3333 and C1111 = E 
1 - ν

(1 + ν)(1 - 2ν)
 , with ν  as

Poisson's ratio. In gneral C1111 differs from, usually greater than, E. For shear waves, v = G/ρ with G as the shear modulus.
§2.2  Measurement of velocity
Velocity can be measured by determining the time delay for the wave to pass through a sample of material. The velocity is

the distance (thickness) divided by the time delay. In this method, one transducer sends the waves and another one receives them.
One can also use two samples and measure the delay difference. The velocity v is determined from the difference ∆ t in

transit times of a particular zero-crossing in the signal, and the known lengths l 1 and l 2 of the specimens,
v =(l 1 - l 2)/∆ t.

It is also possible to determine velocity with one ultrasonic transducer rather than two. In this approach, waves reflect off
the free end and back to the transducer, creating a series of echoes. Measure the time delay between adjacent echoes. For
calculation, use as a length the total distance traveled by the wave, twice the specimen thickness.

§3    Testing.
§3.2  Set-up
Connect the pulser to the ultrasonic transducer or transducers and to the oscilloscope. Examine the signal. Measure the

dimensions of your specimens.
§3.2  Polymer test: preliminary
Determine the ultrasonic longitudinal wave speed for a glassy polymer, polymethyl methacrylate (PMMA). A stronger

signal is obtained if a thin layer of water is used as a couplant between transducer and specimen. How stiff is the
polymer? Assume a Poisson's ratio of 0.3 to calculate E from C1111. Does the velocity depend on direction? How does
the stiffness at ultrasonic frequency compare with the known stiffness E ≈ 2.6 GPa at low frequency?



§3.3  Bone test
Repeat the above test with a cube or prism of bone. What modulus do you infer for the bone? Does the velocity depend on

direction? Is the bone sample isotropic, axisymmetric (transversely isotropic) or orthotropic?
§3.4  Further experiments (if time permits)
Use shear waves, using shear transducers, to obtain the shear modulus G. Shear waves are polarized. Can you see any

difference if you rotate one transducer by 90 degrees? Water coupling does not work well for shear waves. Why?
Use longitudinal waves at a different frequency (10 MHz). Do you expect properties to depend on frequency? Explain.

§4    Questions.
1. If the frequency of the ultrasonic waves is 1 MHz, what is the wavelength of the waves? What is the wavelength if the

frequency is 10 MHz? For bone the density is about 2 g/cm3, for PMMA, about 1.1 g/cm3. Recall λν = v, with λ as
the wavelength of waves, ν  as frequency, and v as velocity.

2. The ultrasonic wave speed in soft tissue is about 1540 m/s. A clinical ultrasound system sends pulses from the skin to a
lesion 7 cm deep in the liver. How long does it take for the pulses to return? Based on your lab experience, comment
on what range of frequency is appropriate.

§5  Appendix: Measurement of attenuation
We will not make such measurements here but this is how it is done. The attenuation α, in units of nepers per unit length

is determined from the magnitudes of the signals: A1 through a specimen of length l 1, A2 through a specimen of length l 2.

α = 
ln(A1/A2)
(l 1 -  l 2)

  . The viscoelastic damping tan δ is given in terms of the attenuation by  α ≈ (ω /2v)tan δ for small δ; the exact

version is α = 
ω
v  tan 

δ
2 , with ω  = 2πν. The physical meaning of δ is the phase angle between stress and strain under sinusoidal

load. One cannot simply obtain attenuation from a ratio of transmitted signal with and without a sample for the following
reasons. If the area of the transducer is greater than that of the specimen, the reduction in area will cause a reduction in signal
unrelated to the nature of the specimen material. Also, some of the ultrasonic energy is absorbed by the transducer itself.
Therefore the transducer extracts considerable energy from the sound wave at each echo. One could compensate for this loss by
comparing the transmitted signal through specimens of different length, however such an approach is complicated by the need
to control contact force, which influences the strength of the transmitted signal.

Attenuation can be measured in a single transducer method. Place a buffer rod between the transducer and the specimen. The
rationale for this approach is to eliminate parasitic energy loss from sound waves entering the transducer. A broadband NDT
type transducer can be used in the buffer rod approach. Attenuation is inferred from the magnitude of echoes called A, B, and C
in order of their time delay following the driving pulse. Echo A is a reflection from the buffer-specimen interface. Echo B is
from the specimen-air interface. Echo C has reflected once from the buffer-specimen interface and twice from the specimen-air
interface. The reflection coefficient R for the rod-specimen interface must be known. It may be calculated from the echoes as

follows. Normalize the echo amplitudes, retaining their sign. A = 
A
B

  , C = 
C
B

 . The reflection coefficient is R = 
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 .

The attenuation is α = 
1
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} , with l   as specimen length. Here the waves reverberate between a reflective free surface

and a specimen-buffer surface for which the acoustic reflectivity can be calculated from the echoes.
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